“Some New Variance Reduction Ideas in Simulation”

Professor Sheldon Ross
Department of Industrial Engineering and Operations Research
University of Southern California

Tuesday, September 12, 2006
1 Stratified sampling in Simulation

\[\theta = E[X] \]
usual: \(\bar{X}, \ Var = \text{Var}(X)/n \)

\[E[X] = \sum_{i=1}^{k} E[X|Y = y_i]p_i \]

\(np_i \) runs conditional on \(Y = y_i \)

\[\mathcal{E} = \sum_{i=1}^{k} \bar{X}_i p_i \]

\[\text{Var}(\mathcal{E}) = \sum_{i=1}^{k} p_i^2 \text{Var}(\bar{X}_i) \]

\[= \frac{1}{n} \sum_{i=1}^{k} p_i \text{Var}(X|Y = y_i) \]

\[= \frac{1}{n} E[\text{Var}(X|Y)] \]
D: sum of the delays of all arrivals by t

$$E[D] = \sum_{j=0}^{m} E[D|N(t) = j]p_j + E[D|N(t) > m] \tilde{P}_m$$

1. $N(t) = 1$. Generate U; let $\mathcal{A} = \{tU\}$.
2. Generate S; calculate D_1.
3. Let $N(t) = N(t) + 1$.
4. Generate U, add tU to \mathcal{A}
5. Generate S; calculate $D_{N(t)}$
6. If $N < m$ return to Step 3.
7. Generate $N(t)|N(t) > m$:
 $A_i, S_i, i = m + 1, \ldots, N(t) : D_{>m}$

$$\mathcal{E} = \sum_{j=0}^{m} D_j e^{-\lambda t} (\lambda t)^j / j! + D_{>m} (1 - \sum_{j=0}^{m} e^{-\lambda t} (\lambda t)^j / j!)$$
Theorem \(\Var(\mathcal{E}) \leq \Var(D) \)

Proof: Generate \(D \) by

1. Generating \(N' =_{d} N(t) \mid N(t) > m \)
2. Generate \(A_1, \ldots, A_{N'}, \text{iid } U(0, t) \)
3. Generate \(S_1, \ldots, S_{N'} \)
4. Generate \(N(t) \)
5. If \(N(t) = j \leq m \), use \(A_1, \ldots, A_j \) and \(S_1, \ldots, S_j : D = D_j \).
6. If \(N(t) > m \), use \(A_1, \ldots, A_{N'} \) and \(S_1, \ldots, S_{N'} : D = D_{>m} \).

Conditioning on \(N(t) \), gives

\[
E[D \mid N', A_1, \ldots, A_{N'}, S_1, \ldots, S_{N'}] = \mathcal{E}
\]
\[H = h(X_1, \ldots, X_n); \ h(0, \ldots, 0) = 0 \]
\[\alpha = E[H] \]

Given \(\Theta = \theta \)

Model 1: \(X_i \) independent Poisson:
\[E[X_i] = \theta \lambda_i \]

Model 2: \(X_i \) independent Bernoulli:
\[E[X_i] = \theta p_i \]
\[m = ? \]
\[E[X|\Theta] = \text{Var}(X|\Theta) = \lambda \Theta \]
\[E[X] = \lambda E[\Theta] \]
\[\text{Var}(X) = \lambda E[\Theta] + \lambda^2 \text{Var}(\Theta) \]
\[m = E[X] + k\sqrt{\text{Var}(X)} \]

How to generate \(X|X > m \)?

inverse transform
Theorem: \(\text{Var}(\hat{\alpha}) \leq \text{Var}(H) \)

Pf: Generate \(H \) as follows:

1. Generate \(I = I_1, \ldots \)
2. Generate \(Y \) distributed as \(X | X > m \)
3. Generate \(X \)
4. If \(X \leq m \), let \(X_i \) be number of \(I_1, \ldots, I_X \) equal to \(i \)
5. If \(X > m \), let \(X_i \) be number of \(I_1, \ldots, I_Y \) equal to \(i \)

6. \(H = h(X_1, \ldots, X_n) \)

\[
E[H|I] = \sum_{i=1}^{m} E[H|I, X = i]P_i + E[H|I, X > m]P_{>m} = \hat{\alpha}
\]
Bernoulli model

Case 1: X_1, \ldots, X_n exchangeable

$$X = \sum_{i=1}^{n} X_i$$

$$P_j = P(X = j)$$

cond iid:

$$P_j = \int \binom{n}{j} (\theta p)^j (1 - \theta p)^{n-j} dF(\theta)$$

$$\alpha = E[H] = \sum_{j=0}^{n} E[H|X = j] P_j$$

1. Generate random permutation I_1, \ldots, I_n
2. $j = 0$, all $x_i = 0$
3. $H_j = h(x_1, \ldots, x_n)$
4. $j = j + 1$, $x_{I_j} = 1$
5. If $j < n$ return to 3
6. $H_n = h(1, \ldots, 1)$

$$\hat{\alpha} = \sum_{j=0}^{n} H_j P_j$$
Special Case: \(h \) binary and increasing

\[
\hat{\alpha} = \sum_{j = K}^{n} P_j
\]

\[N = \min(k : (I_1, \ldots, I_k) \text{ is min path})\]

\[
\hat{\alpha} = \sum_{j \geq N} P_j
\]
Example 1: bridge system with $p(\theta) = \theta$

$P\{N = 2\} = 1/5, P\{N = 3\} = 3/5, P\{N = 4\} = 1/5$

$$\text{Est} = \begin{cases}
\sum_{j=2}^{5} b_j, & \text{with prob. } 1/5 \\
\sum_{j=3}^{5} b_j, & \text{with prob. } 3/5 \\
\sum_{j=4}^{5} b_j, & \text{with prob. } 1/5
\end{cases}$$

<table>
<thead>
<tr>
<th>distribution</th>
<th>π</th>
<th>$\pi(1-\pi)$</th>
<th>Var(Est)</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform $(0, 1)$</td>
<td>.5</td>
<td>.25</td>
<td>.011</td>
</tr>
<tr>
<td>deterministic</td>
<td>.5</td>
<td>.25</td>
<td>.039</td>
</tr>
<tr>
<td>deterministic</td>
<td>.7</td>
<td>.8016</td>
<td>.0213</td>
</tr>
<tr>
<td>deterministic</td>
<td>.9</td>
<td>.9785</td>
<td>.0009</td>
</tr>
<tr>
<td>deterministic</td>
<td>.95</td>
<td>.9948</td>
<td>.00008</td>
</tr>
</tbody>
</table>
\[P(X_i = 1|\Theta = \theta) = \theta p_i \]

- choose \(p : p_i \leq p \)
- \(X_i = 1 \) if \(i \) passes 2 stages
- \(i \) passes stage 1 w. prob. \(p_i/p \)
- \(i \) passes stage 2 w. prob \(p\Theta \)
- Generate stage 1
- Use exchangeable for conditional system

Computation: need

\[P_j(r) = \int \binom{r}{j} (\theta p)^j (1 - \theta p)^{r-j} dF(\theta) \]
Special Case: \(P(\Theta = 1) = 1 \)

- choose \(p \)

- \(p_i < p \)

 \[X_i = 1 \] if \(i \) passes 2 stages

 \(i \) passes stage 1 w. prob. \(p_i/p \)

 \(i \) passes stage 2 w. prob \(p \)

- \(p_i > p : \)

 \[X_i = 1 \] if \(i \) passes either stage

 \(i \) fails stage 1 w. prob. \((1-p_i)/(1-p) \)

 \(i \) passes stage 2 w. prob. \(p \)

- Generate stage 1

- Use exchangeable for conditional system
Example m-of-100: \(p_i = .4 + .002i, \ i = 1, \ldots, 100. \)

\(p = .5 \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\pi)</th>
<th>(\pi(1 - \pi))</th>
<th>(\text{Var}(\hat{\pi}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.999987</td>
<td>1.3 \times 10^{-5}</td>
<td>5.15 \times 10^{-10}</td>
</tr>
<tr>
<td>35</td>
<td>0.999227</td>
<td>7.72 \times 10^{-4}</td>
<td>9.20 \times 10^{-7}</td>
</tr>
<tr>
<td>40</td>
<td>0.98396</td>
<td>.0158</td>
<td>.00017</td>
</tr>
<tr>
<td>45</td>
<td>0.8701</td>
<td>.1130</td>
<td>.00412</td>
</tr>
<tr>
<td>50</td>
<td>0.5476</td>
<td>.2477</td>
<td>.0140</td>
</tr>
<tr>
<td>55</td>
<td>0.1889</td>
<td>.1532</td>
<td>.0067</td>
</tr>
<tr>
<td>60</td>
<td>0.0291</td>
<td>.0283</td>
<td>.00045</td>
</tr>
</tbody>
</table>

Additional Variance Reduction: Antithetic variables in Stage 1
\[\theta = E[g(U_1, \ldots, U_n)] \\
= \int_0^1 \int_0^1 \cdots \int_0^1 g(x_1, x_2, \ldots, x_n) \, dx_1 \, dx_2 \cdots \, dx_n \]

Now,
\[E[\text{Var}(g(U_1, \ldots, U_n) | \prod_{i=1}^n U_i)] \] often small.

(a) generate \(U_1, \ldots, U_n \) conditional on \(\prod_{i=1}^n U_i \)
(b) generate the value of \(\prod_{i=1}^n U_i \) in a stratified fashion.

\[T_j = \sum_{i=1}^j - \log(U_i) = - \log(U_1 \cdots U_j) \]

Generate
\[T_n = - \log(U_1 \cdots U_n) \]

Generate \(V_1, \ldots, V_{n-1} \), order them
\[V_{(1)} < V_{(2)} < \ldots < V_{(n-1)} \]
\[T_n V_{(j)} = -\log(U_1 \cdots U_j) \]
\[= T_n V_{(j-1)} - \log(U_j) \]

Therefore,
\[U_j = e^{-T_n[V_{(j)} - V_{(j-1)}]}, \quad j = 1, \ldots, n \]

To generate \(T_n \) on run \(k \):
\[G_n^{-1}\left(\frac{U + k - 1}{n} \right). \]
\[\theta = E[g(B)] \]

where \(B \) is equally likely to be any of the \(\binom{n}{k} \) subsets of \(S = \{1, 2, \ldots, n\} \)

usual: independent choices of \(B \)

idea: choose next subset from unchosen elements

works: when \(g \) is monotone