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Abstract

Providing Quality of Service (QoS) di�erentiation and guarantees in wireless net-

works is a challenging task due to the special problems of wireless communications,

such as link variability and limited bandwidth. New technology needs to be devel-

oped to tackle these problems.

Wireless packet scheduling, a key component of QoS provisioning in wireless data

networks, is the major focus of this dissertation. Although many wireless packet

scheduling algorithms have been proposed in recent years, some issues remain unre-

solved. We study packet scheduling issues in both TDMA-based and CDMA-based

wireless networks and propose three novel wireless scheduling algorithms applica-

ble to di�erent link and network models. First, we design a scheduling algorithm

for TDMA networks with wireless links being modeled as having two states. The

algorithm is shown to distribute excess bandwidth e�ectively, strike a balance be-

tween e�ort-fair and outcome-fair, and provide delay bound for error-free 
ows and

transmission e�ort guarantees for error-prone 
ows. Second, extending the previ-

ous work, we propose a novel wireless scheduling algorithm applicable to wireless

xi



links with multiple states. For delay-sensitive 
ows, the algorithm is capable of pro-

viding statistical delay violation bounds. For best-e�ort 
ows, we propose a new

notion of fairness, called long-term link-quality-weighted outcome-fair. The algo-

rithm balances between bandwidth e�ciency requirement and fairness requirement,

and guarantees minimal goodput levels for best-e�ort 
ows. Third, an adaptive

packet scheduling algorithm for cellular CDMA networks is proposed. The algo-

rithm guarantees packet deadline and average data rate under the assumption of

perfect power control. It is also power-e�cient because it takes into account the

varying channel conditions.

Due to the special characteristics of wireless mobile environment, �xed level of

service guarantees and �xed level of resource allocation, commonly used in wireline

networks, are not suitable and viable in wireless networks. In the last part of our

dissertation, we propose a general utility-oriented adaptive QoS model for wireless

networks and establish a framework for formulating the bandwidth allocation prob-

lem for users with time-varying links. Based on the framework, a high-level adaptive

bandwidth allocation scheme, which guarantees utility-based QoS, ensures long-term

fairness, and achieves high bandwidth e�ciency, is designed.
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Chapter 1

Introduction

With the developement of 3G (3rd Generation) wirless communication technologies

and the rollout of wireless data services such as CDPD (Cellular Digital Packet

Data) [1], and GPRS (General Packet Radio Service) [5], the future wireless networks

are evolving toward broadband data networks. It is expected that future wireless

networks should provide packet data services for heterogeneous classes of tra�c

with di�erent QoS (Quality of Service) requirements [11], [43]. The characteristics of

wireless communication pose special problems that do not exist in wireline networks.

These include: (i) high error rate and bursty errors, (ii) location-dependent and

time varying wireless link capacity, (iii) scarce bandwidth, (iv) user mobility, and (v)

power constraint of the mobile hosts. Due to the above problems, the service models,

frameworks and solutions designed for providing QoS guarantees and di�erentiations

in wireline networks are not directly applicable in wireless networks. Currently there

is an urgent need to develop new technologies for providing QoS di�erentiation and

guarantees in wireless networks.

1



1.1 Packet Scheduling in Wireless Networks

Among all the technical issues that need to be resolved in wireless networks, packet

scheduling is one of the most important. Scheduling algorithms provide mechanisms

for bandwidth allocation and multiplexing at the packet level. Admission control and

congestion control policies are all dependent on the speci�c scheduling disciplines

used. Many scheduling algorithms, capable of providing certain guaranteed QoS,

have been developed for wireline networks. However, these existing service disciplines

[61], such as Fair Queueing [6], [19], [44], CBQ (Class-based Queueing) [22], and EDD

(Earliest Due Date) [34], can not be directly applied in wireless networks, because

they do not consider the varying wireless link capacity and the location-dependent

channel state.

The biggest di�erence between a wireless network and a wireline network is the

transmission link variability. Due to the high quality of the transmission media,

packet transmissions on wireline networks enjoy very low error rate. However, wire-

less channels are more error-prone and su�er from interference, fading and shadow-

ing. As a result, the capacity of a wireless link has very high variability. Besides

the time-dependent problem, wireless link capacity is also location-dependent. A

base station can typically communicate with more than one mobile host simultane-

ously. Due to di�erent physical locations, some mobile hosts may enjoy error-free

communication with the base station, while others may experience high error-rate.

This is the so-called location-dependent error. Furthermore, mobility of the hosts
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increases the variability of the transmission links. Such link variations require the

scheduling algorithms to be equipped with dynamic mechanisms to deal with these

time-dependent and location-dependent changes.

When designing wireless scheduling algorithms, there are four major issues to be

considered, namely, fairness, QoS guarantees, bandwidth e�ciency, and simplicity.

Scheduling fairness in wireline networks is usually guaranteed by dedicating a

certain service rate to a 
ow or a user, and the scheduling algorithm provides iso-

lation mechanisms among di�erent 
ows. Since wireline media may be considered

error-free, the service rate allocated is indeed the amount of service share that is re-

ceived by a particular 
ow. However, the fairness issue in wireless networks is more

complicated. Since losses and errors are unavoidable in wireless links, the band-

width allocated to a 
ow may not be equal to the actual goodput1 achieved. Due to

location-dependent errors, di�erent users may have communication links with dif-

ferent statistics depending on their moving speeds and locations. Therefore, there

exists a discrepancy between the transmission capacity (bandwidth) allocated to a


ow and the actual goodput achieved. As suggested by many wireless scheduling

algorithms [12], swapping service opportunities are allowed to improve channel uti-

lization. That is, when a 
ow is scheduled to transmit but its link is relatively bad,

it may give up its current service opportunity to some other 
ow with better links.

To ensure fairness, the 
ow should be compensated for this temporary loss of service

1the total amount of successful transmissions
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later when its link recovers. But determining how to compensate for it is not an

easy task. Some fairness de�nitions for wireline scheduling algorithms are available

in [6] and [26]. The de�nition and objectives of fairness guarantees become more

ambiguous in a wireless environment. The granularity of fairness, i. e., short-term

fairness vs. long-term fairness, is another factor that a�ects the scheduling policy.

To de�ne fairness, the following questions need to be answered. Should we guaran-

tee bandwidth or goodput to the 
ows? Should we try to achieve both short-term

fairness and long-term fairness or only long-fairness is necessary? The appropri-

ate interpretation of fairness should depend on the service model and wireless link

characteristics.

Broadband wireless networks will provide services for heterogeneous classes of

tra�c with di�erent QoS requirements. Therefore, QoS di�erentiation and guaran-

tees must be supported. To achieve this goal, the corresponding mechanism for QoS

support should be integrated into the scheduling algorithm. Depending on the ser-

vice requirements, either simple prioritization or more advanced per-
ow guarantees,

such as delay and throughput, should be provided by the scheduling algorithm. If

a wireless link experiences very frequent channel degradations, it is very di�cult to

guarantee QoS for the 
ows using this link. Nevertheless, deterministic or statistical

QoS guarantees should be provided for the error-free 
ows or 
ows on those links

where only very few errors exist.
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The most precious resource in wireless networks is the bandwidth. Under the

constraints of fairness and QoS guarantees, an e�cient wireless scheduling algorithm

should aim to minimize unproductive transmissions on erroneous links, and at the

same time, maximize the e�ective service delivered and the e�ciency of the overall

wireless channel.

The scheduling algorithms in cell-structured wireless networks are usually run at

the base station. Therefore, the electric power required for computation of packet

service order should not be a big concern because of adequate power supply at the

base station. Although mobile hosts usually are not responsible for computation

of scheduling sequences, sending the base station signaling messages, which may

contain information on mobile hosts' queue status, packet arrival times or and link

states, demands transmission powers at the mobile host. However, mobile hosts

are power-constrained. A good scheduling algorithm should be designed in such a

way that minimal number of scheduling-related control messages are required from

mobile hosts. For example, a scheduling algorithm that needs to use every uplink

packet's arrival time to compute scheduling order is not a good choice, because it

demands a large amount of power frommobile hosts for transmitting the information

of arrival times to the base station. Also the scheduling algorithm should not be too

complex, so that it can be executed at high speed to schedule real-time multimedia

tra�c with stringent timing requirements.
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1.1.1 Packet Scheduling in TDMA Networks

1.1.1.1 Scheduling for Links with Two States

Recently, new packet scheduling algorithms which account for the special character-

istics of the wireless environment have emerged. One of the �rst scheduling algo-

rithms that address the problem of location-dependent and bursty errors in wireless

networks is CSDPS (Channel State Dependent Packet Scheduling) [8]. CSDPS in-

troduces the idea of deferring transmission when a 
ow is experiencing link errors

and swaps the transmission opportunity with some other 
ow with a better link.

CSDPS+CBQ (Classed-based Queueing) [23] adds CBQ component to the original

CSDPS and outperforms CSDPS in terms of fair sharing of the wireless channel.

However, it does not have an explicit mechanism for compensating those mobile

users who have previously lost their service share because of link errors. Thus, there

is no guarantee on the rate at which a mobile user will be compensated. In SBFA

(Server Based Fair Approach) [48], part of the wireless bandwidth is allocated to

some compensation server(s), called Long-Term Fairness Server (LTFS). An LTFS

is a special data 
ow created for compensating 
ows whose packet transmissions are

deferred because of link errors, and it shares the wireless channel with other regular

data 
ows. A 
ow which has lost its service opportunity because of link errors will

accumulate credits in an LTFS. By recording the service loss of each 
ow in LTFS,

and dedicating part of the bandwidth to LTFS, 
ows which have lost their service

share because of link errors will eventually be compensated. However, in SBFA no
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restriction is imposed on 
ows receiving excessive service. Hence, a 
ow with a con-

sistently good link may receive far more service than its promised share. In addition,

LTFS requires pre-allocated network resources, which reduces the service capacity

available to data 
ows and the number of 
ows admitted into the system. Using a

modi�ed version of DRR (De�cit Round Robin) scheduler combined with an explicit

compensation counter, a wireless scheduling algorithm called I-CSDPS (Improved

Channel State Dependent Packet Scheduling) is proposed in [27]. Besides the de�cit

counter maintained in the standard DRR, each 
ow has a compensation counter

which has a function similar to LTFS in SBFA. When a 
ow is served in each round

the amount of service it receives is determined by the sum of its de�cit counter and

a portion of the compensation counter. I-CSDPS has the same problem as SBFA in

the sense that it does not impose any restriction on 
ows receiving excessive service.

IWFQ (Idealized Wireless Fair Queueing) [39], CIFQ (Channel-condition Inde-

pendent Packet Fair Queueing) [42] and WFS (Wireless Fair Service) [40] are all

based on wireline fair queueing. They all use an error-free fair queueing scheduling

system as a reference. In the real error-prone system, a 
ow is de�ned as leading,

lagging or in sync, at any time instant, if it has received more than, less than or the

same as the service it should have received in the corresponding error-free system.

In IWFQ, arriving packets are tagged with timestamps just as in WFQ. When the

scheduler is ready to send, the packet with the minimum �nish tag and with a good

link is transmitted. When a 
ow's link recovers from an error state, its packets

7



may have the smallest virtual tags and as a result, the scheduler may only serve this


ow exclusively for an extended period. To alleviate this problem, IWFQ arti�cially

bounds the amount of lag and lead. Although IWFQ has some appealing proper-

ties in fairness and QoS guarantees, as pointed out in [42] it is de�cient in terms

of short-term fairness and CIFQ is designed to address these problems. WFS tries

to modify IWFQ to improve short-term fairness. Adopting some ideas from CIFQ,

WFS allows graceful degradation for leading 
ows and distributes the compensation

bandwidth among lagging 
ows according to their lags. WFS also tries to decouple

the rate and delay requirements. Instead of only one weight in fair queuing, each


ow is assigned two weights, rate weight and delay weight. A 
ow is drained into the

scheduler according to the rate weight , but served according to the delay weight.

WFS only compensates a backlogged 
ow denied service during its scheduled slot if

some other 
ow transmitted a packet during this slot.

All the above algorithms assume that a wireless link is either in a good state or a

bad state and errors are bursty. The state durations and transitions between states

are random. Transmissions in a good state are always error-free and transmissions in

a bad state always fail. To compare with the existing wireless scheduling algorithms,

we �rst design a wireless packet scheduling algorithm for the two-state link model.

We compare the algorithm we proposed with WFS and CIFQ, the most recent and

most sophisticated scheduling algorithms using the two-state link model. Compared

with other algorithms, WFS and CIFW have well-de�ned fairness objectives and

8



tighter delay bounds. However, both algorithms have de�ciencies, such as unrealistic

link model, impractical timestamping method, no transmission e�ort guarantee for


ows with high error rate, excess provision for error-free 
ows, etc. We will discuss

more about such de�ciencies in the next chapter.

1.1.1.2 Scheduling for Links with Multiple States

In reality the capacity of a wireless link does not jump between zero capacity and full

capacity. To model the links more accurately, more states should be used instead of

such a coarse two-state model. In particular, when adaptive modulation or adaptive

coding is used, a 
ow clearly has di�erent e�ective throughput levels for di�erent

modulation constellations or coding rates. In addition, since bandwidth wastage due

to losses, errors, and coding overheads is unavoidable in wireless links, the bandwidth

allocated to a 
ow may not be equal to the actual goodput achieved. The above

algorithms have not addressed this issue.

ELFS [20] and CS-WFQ [38] brought up another perspective of the wireless

scheduling issue. They address the issue of outcome-fair vs. e�ort-fair. Since in

wireless networks part of the transmission e�ort/capacity is unavoidably wasted due

to link errors, for the same amount of transmission e�ort, if the links have di�erent

error rates, the outcomes will be di�erent. E�ort-fair means each 
ow should receive

transmission capacity in proportion to its assigned weight/rate. Outcome-fair means

the achieved goodput of each 
ow should be in proportion to its assigned weight/rate.

In the algorithms discussed previously, the 
ows on links with larger error rate always

9



receives less transmission e�ort than the ones with better links. In ELFS and CS-

WFQ, the authors argue that some 
ows may be more important than others, and

thus deserves more transmission e�ort even if its link's error rate is high. ELFS and

CS-WFQ tries to achieve outcome fair by increasing the fair queueing weight of the


ows with larger error rates. To overly reducing the overall bandwidth e�ciency,

an upper bound for the weight is set. Although [20] and [38] point out the tradeo�

between e�ort-fair and outcome fair, the algorithms proposed are too simplistic and

have some fundamental shortcomings. First, they assume that a link's error rate does

not change over time. Thus they do not exploit the bene�t of improving bandwidth

e�ciency by swapping service opportunities. Second, increasing the weights for


ows with high error-rate links directly reduces the service e�ort other 
ows receive

irrespective of their rate guarantees or link status. Therefore, even a well-behaving


ow with error-free link may not get its fair share of service.

Similarly, [32] also associates the weight assignment of classical fair queueing

algorithm to the link e�ciency. Speci�cally, each 
ow's weight is determined by

the link's e�ciency raised by an exponent. By choosing di�erent values of the

exponent, the algorithm can adjust the bandwidth allocation among 
ows taking

into account the 
ows' e�ciencies. However, it assumes that a link's e�ciency

changes slowly, and between changes the e�ciency is a constant. When a link's

status changes rapidly, the schemes adapting to link variations by adjusting weights

are not e�ective. Furthermore, it does not exploit the bene�t of swapping service
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opportunities, namely, allowing a 
ow with a good link to transmit in place of a 
ow

which is experiencing a bad link.

Besides the aforementioned problems, none of the existing scheduling algorithms

addresses the issue of providing delay guarantees for 
ows with error-prone links.

Nevertheless, for real-time and delay-sensitive applications delay guarantees are es-

sential. Thus the scheduling algorithm should be able to provide certain delay guar-

antees even for error-prone 
ows if requested. For best-e�ort applications, the major

concerns of the scheduling algorithm should be bandwidth e�ciency and fairness.

Since links may be di�erent not only in instantaneous qualities but also in average

qualities, to achieve perfect fairness and to maximize bandwidth e�ciency are con-


icting objectives in most cases. When links are fast-changing and possess multiple

states, maintaining short-term fairness becomes impractical and unnecessary. In ad-

dition, when links di�er in average quality, how to guarantee bandwidth for 
ows

with inferior link qualities and balance between e�ciency and fairness objectives

have not been well studied.

Extending the research on scheduling for two-state wireless link models, we pro-

pose a novel scheduling algorithm, which applies to wireless links with multiple states

and addresses the above issues. For 
ows requiring timely delivery, the algorithm

provides statistical delay violation bounds even when the links are not perfect. For

best-e�ort 
ows, we maintain that neither e�ort-fair nor outcome-fair is suitable in

wireless networks. Instead, we propose the notion of long-term link-quality-weighted
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outcome-fairness (LT-LQW outcome-fairness), which we believe is more meaningful

considering the heterogeneous link qualities. In addition, we show that by using

a very simple scheduling scheme we can guarantee certain e�ort and goodput lev-

els for each best-e�ort 
ow, improve bandwidth e�ciency and maintain LT-LQW

outcome-fair.

1.1.2 Packet Scheduling in CDMA Networks

Most of the existing wireless packet scheduling algorithms focus on the scheduling in

TDMA (Time Division Multiple Access) networks. In such a system, the scheduler

can serve only one packet at a time. However, in a CDMA (Code Division Multiple

Access) network, multiple packets can be transmitted by the base station simulta-

neously, those packet scheduling algorithms designed for TDMA-based single-server

systems are generally not applicable. On the other hand, variable service rates

provided by multi-code CDMA [31] can be used to increase 
exibility in packet

scheduling. Furthermore, the fast closed-loop power control enables the base station

to gather fairly good estimates of the channel condition, which facilitates the design

of packet scheduling algorithms with channel status awareness.

Unlike the large amount of work on scheduling in TDMA networks, there are

much less existing packet scheduling algorithms for CDMA networks. [2] and [7] both

designed slot-based algorithms, where a CDMA frame is divided into multiple slots

for transmitting data and control packets to/from di�erent users. In particular, [2]

12



addresses the issue of scheduling in a slotted CDMA network based on bit error rate

(BER) requirements. The scheduler [3] tries to schedule packets based on their BER

requirements while maintaining high utilization of the resources. However, fairness

issues, delay bounds and throughput guarantees are not discussed. [7] considers

the problem of delivering non-real time data tra�c, whose service requirement is

speci�ed in terms of a required average data rate over a speci�c interval, by one-

by-one scheduling in a DS-CDMA system. The scheme, which allows only one user

in each cell to transmit at a time, is shown to consume less energy compared with

continuous transmission. While slotted-CDMA may achieve higher capacity from

reducing intra-cell interference, it requires smart slot assignment algorithm (which

is usually very di�cult to design) and fundamental modi�cations of frame structure

and media access control (MAC) protocol from the existing CDMA proposals.

In [50] packets are scheduled according to their calculated priorities and the sys-

tem resource constraints. The priority of a packet is de�ned as inversely proportional

to the remaining time before the packet expires. The adaptive CDMA scheduling

algorithm we propose has the similar strategy to [50] in the sense that the stan-

dard CDMA frame structure and MAC protocol are maintained, and priority-based

scheduling is performed. However, our packet scheduling algorithm is adaptive to

not only the packet delay deadline required by the application, but also the devi-

ation of data rate from its target value and the channel status variations. In the

CDMA scenario the channel status is more coupled with power consumption instead
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of packet loss as in TDMA, and it is not yet considered by any of the existing CDMA

packet scheduling methods. Our algorithm is the �rst one to take into account the

issues of data delay tolerance, average rate fairness, and channel variations alto-

gether. In addition, our algorithm works with realistic channel model instead of the

simple two-state model used in the majority of TDMA packet scheduling methods

(if at all they consider the issue). We also study and discuss the relation between

packet scheduling and 
ow admission control as well.

1.2 Adaptive Service and Resource Allocation

Since the wireless channel is highly variable and wireless network users are mobile,

�xed level of service guarantees and �xed level of resource allocation, commonly used

in wireline networks, are not suitable and viable in wireless networks. We believe

that a more 
exible adaptive service model which allows variable QoS is needed. In

an adaptive QoS service model, the user applications are required to be adaptable,

and the resource and the service capacity allocated to the applications are not �xed,

but adjusted according to the condition of the network. In such a service model,

applications allow graceful service degradation while maintaining certain minimal

service requirement. We maintain that an adaptive QoS service model is necessary

and valid in wireless mobile networks due to the following reasons: (i) Highly volatile

wireless links, unpredictable user mobility, and uncoordinated multiple access of the

wireless channel make it impossible to impose very rigid QoS requirements; (ii) most
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of the new multimedia applications are designed to have certain adaptability by,

for example, dynamically adjusting playback time or layered coding [41]; (iii) from

the user's perspective, lower service quality within the tolerable region is certainly

better than denial or disruption of service during adverse network conditions; (iv)

the network resources can achieve high utilization, thus accommodating more users.

Wireless network service models that incorporate the concept of adaptive QoS

can be found in [9], [10], [49], [54], [55]. However, none of the papers discusses

the problems of location-dependent link variations and links with multiple physical

states. The only channel variation some of these papers consider is the change of

total available bandwidth/capacity. However, as we have pointed out, di�erent users

may experience di�erent link capacity due to di�erent locations. To combat wireless

link variability and improve bandwidth utilization, we believe bandwidth should be

allocated in an adaptive and link-state-dependent way. Irrespective of the amount

of bandwidth received, the ultimate measure of the e�ectiveness of network services

is the level of users' satisfaction, which is dependent on the speci�c application type.

It is well known that the performance of an application does not always increase

linearly as the bandwidth it receives increases. To capture the heterogeneity of

di�erent applications and to have a consistent performance measure, we propose a

utility-oriented wireless adaptive QoS service model based on utility functions.

Furthermore, there exist two dimensions of adverse dynamics, namely, the dy-

namics of physical channels and the dynamics of users' requests. The dynamics of
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physical channels refer to the inherent variability of wireless channels, which is both

time-dependent and location-dependent. In addition to the channel dynamics, the

uncoordinated users' transmission requests make up the other dimension of the chal-

lenging dynamics. The broadcast nature of wireless communication causes con
icts

or interference among users' transmissions. Since users generate their tra�c inde-

pendently, without any regulatory policy, they would contend for wireless channel

access in an uncoordinated way. Also, mobility of the users adds to the dynamics

of users' transmission requests. These requests can be call-based, burst-based or

packet-based, each of which applies to a di�erent time scale. In order to utilize

the bandwidth e�ciently and fairly, and to satisfy the users' service requirements,

a resource allocation scheme should account for both dimensions of the dynamics of

the wireless and mobile environment, and actively adapts to them.

There has been a great amount of work on wireless resource management, focus-

ing on multiple access [3] and channel allocation [35]. Most of the previous work

tackled one aspect of the bandwidth allocation problem, i.e. the dynamics of user

requests. That is, resolving con
icts due to users' uncoordinated requests and al-

locating resources, such as transmission slots and call channels, appropriately to

satisfy those requests. However, there is less research e�ort on adding explicit adap-

tive mechanisms to bandwidth allocation schemes to deal with the variability of

wireless links.
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In most wireless scheduling schemes [12], where a two-state Markov channel

model is used, a user will not receive any bandwidth when its link experiences a long-

lasting shadowing degradation. However, in reality, the capacity of a wireless link

will have more than two states. When slow variations are dominant, a more desirable

approach is to change both the code length and the amount of bandwidth allocated

to a user as its link changes state. Thus a user will still be able to receive some

service when its link quality degrades and the overall bandwidth will be utilized more

e�ectively by allocating more bandwidth to users who can better utilize it. When

fading and shadowing occur simultaneously, the fast variations are superimposed on

slow variations, with the latter actually determining the short-term (in the order of

seconds) average link quality. To improve bandwidth utilization, in addition to the

swapping mechanism at the packet level, a high-level bandwidth allocation scheme

should adjust the average bandwidth share (e.g. the scheduling weight) of each user

as the average link quality changes.

Wireless links are usually subject to two types of variations, i.e. slow variations

(shadowing) and fast variations (fading). For typical cellular communications, the

duration of shadowing is in the order of seconds or tens of seconds, while fading

usually lasts for milliseconds or shorter. Traditionally, low level mechanisms, such as

error correction coding [21], [60] and swapping transmission opportunities in adaptive

packet scheduling [12], [39], [42] are used to handle physical link variability. However,

such mechanisms work for relatively small time scales, e.g. the duration of a bit
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or a packet, which are comparable to the duration of fast fading. For slow link

variations, such mechanisms alone are inadequate. In adaptive coding, the decision

of using which codeword for a packet or a symbol is usually only based on the

instant wireless link condition of the particular user. A user with very bad link

quality may waste a great amount of bandwidth on coding overhead. The overall

e�ective bandwidth utilization and fairness among di�erent users are not concerned.

In most wireless scheduling schemes [12], where a two-state Markov channel model is

used, a user will not receive any bandwidth when its link experiences a long-lasting

shadowing degradation. However, in reality, the capacity of a wireless link will

have more than two states. When slow variations are dominant, a more desirable

approach is to change both the code length and the amount of bandwidth allocated

to a user as its link changes state. Thus a user will still be able to receive some

service when its link quality degrades and the overall bandwidth will be utilized more

e�ectively by allocating more bandwidth to users who can better utilize it. When

fading and shadowing occur simultaneously, the fast variations are superimposed on

slow variations, with the latter actually determining the short-term (in the order of

seconds) average link quality. To improve bandwidth utilization, in addition to the

swapping mechanism at the packet level, a high-level bandwidth allocation scheme

should adjust the average bandwidth share (e.g. the scheduling weight) of each user

as the average link quality changes.
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Since the dynamics of physical wireless links exist over a wide range of time scales

(from microseconds to seconds), an ideal system should incorporate adaptive mech-

anisms working at all levels of time scales. Even in wireline broadband networks,

using multi-level resource allocation mechanisms at di�erent time scale is considered

as necessary because of tra�c dynamics [33]. In addition to the packet-level adap-

tive scheduling mechanisms we designed to combat fast link variations, we establish

a very general modeling framework of the high-level bandwidth allocation problem

based on the utility-oriened adaptive QoS service model and design an adaptive

bandwidth allocation scheme to deal with slow link variations.

1.3 Dissertation Outline

The remainder of the dissertation is organized as follows. In Chapter 2, we �rst

discuss the problems of existing packet scheduling algorithms for TDMA-based wire-

less networks with two-state link models. Then we propose a new wireless packet

scheduling algorithm to solve these problems. In Chapter 3, we present a wireless

packet scheduling algorithm for links with multiple states. Statistical delay violation

bounds are provided for delay-sensitive tra�cs. A new notion of fairness suitable for

wireless networks is propsed. Chapter 4 discusses the issues of adaptive scheduling

in CDMA-based cellular networks. A novel adaptive scheduling algorithm, which

takes into account data delay tolerance, average rate fairness, and channel varia-

tions altogether, is proposed. In Chapter 5, we propose a general utility-oriented
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adaptive QoS model for wireless networks and establish a framework for formulat-

ing the bandwidth allocation problem for users with time-varying links. We design

an adaptive bandwidth allocation scheme based on the new service model. Finally,

Chapter 6 concludes the dissertation.
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Chapter 2

Wireless Packet Scheduling for Links with

Two-states

2.1 De�ciencies of CIFQ and WFS

As you have discussed, CIFQ and WFS are the most recent and most sophisticated

packet scheduling algorithms for two-state wireless link models. However, they still

have some de�ciencies. Since our proposed scheduling algorithm is designed to ad-

dress these de�ciencies, we now discuss them in detail.

First, as in most other wireless scheduling algorithms, they assume that each

wireless link has two states, good and bad. The packet error probability in a good

state is zero, while the packet error probability in a bad state is 100%. However,

in reality the capacity of a wireless link does not jump between zero and one. A

two-state link model is, in practice, established by setting a threshold of a link

21



parameter [58], [63], such as SNR (Signal-to-Noise Ratio) or BER (Bit Error Rate)1,

which re
ects the link quality. When the instant SNR or BER value is above the

threshold, the link is considered good ; otherwise, it is considered bad. Therefore, if

each state is associated with one error probability, this value is in fact the average

error probability corresponding to a range, not a single point, of SNR or BER. For

example, even for a slowly moving user with moderate transmission rate, its BER

ranges from 10�1 to 10�10 [63]. Since SNR or BER is a continuous function, no

matter how the threshold is set, assuming zero loss for a good state and 100% loss

for a bad state is unrealistic. Furthermore, the decision of whether a link is good

during a packet's transmission is made before the packet transmission takes place,

and 100% accurate prediction/estimation of a wireless link is never achievable in

practice. Therefore, when a scheduler believes a link is in a good state, it may

actually be in a bad state, or vice versa. Since the scheduling decisions are based

on the scheduler's perception of the links, such estimation errors should also be

accounted for.

Second, in WFS and CIFQ, a 
ow never transmits in a bad state, because they

assume that nothing can be successfully transmitted in a bad state. However, as we

have said, the capacity of a bad state is not necessarily zero and a good state can

be incorrectly designated as a bad state. There are two undesirable consequences of

such a policy. Firstly, 
ows experiencing, on the average, long bad states, and short

1given a �xed modulation scheme
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good states, may be starved. In wireless networks, because of di�erent locations

and moving speeds, di�erent users/
ows may have di�erent average durations for

each link state. In WFS and CIFQ, 
ows with very bad links will receive much less

service e�ort (bandwidth) than its allocated share while 
ows with relatively good

links will receive excess bandwidth. Secondly, such a policy increases packet delay

of 
ows experiencing long bad states. When a 
ow's link is in a bad state, it will not

transmit at all. Then all the packets in the queue will be delayed for at least the

duration of the bad state. Packets with timing requirementsmaymiss their deadlines

and become useless when the link recovers from error. However, if a 
ow is very

important, e.g. a general's command in a battle �eld, we would like to guarantee

certain throughput to this 
ow even if its link is in a bad state. However, when

transmitting in a bad state, a regular (uncoded or weakly coded) packet will be split

into several packets with enhanced error-correction coding protection. Compared

with transmitting a regular packet in a bad state with high error probability, this

will improve the bandwidth e�ciency, because the bandwidth wastage caused by

higher coding overhead is usually much smaller than that caused by higher packet

error probability. For example, when BER is 0.01 and the packet length is 255 bytes,

the error probability of an uncoded packet is almost 1, while the error probability

of a coded packet using (255,128) (50% information bits in a packet) Reed-Solomon

code is less than 10�16.
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Figure 2.1: Distribution of excess bandwidth in GPS

Third, since WFS and CIFQ are based on fair queueing, which in turn emu-

lates GPS (Generalized Processor Sharing) [44], the excess bandwidth due to some


ows being unbacklogged (or idle) is distributed among all the 
ows in proportion

to their fair queueing weights. This is illustrated in Figure 2.1. In this �gure, all


ows have the same weight. Flow 1 becomes unbacklogged during (t1, t2), then its

share of bandwidth is distributed to 
ows 2 and 3 evenly (the solid lines). However,

we argue that such emulation of GPS-type of fairness is not necessary and e�ec-

tive in wireless scheduling. In wireless networks, the same amount of transmission

bandwidth allocated to two 
ows may not result in the same amount of goodput

because of the di�erence between the two 
ows' link qualities. Some 
ows may have

achieved less goodput than its target share because of worse link quality, while some

other 
ows may have achieved enough goodput to guarantee its QoS requirements.

In such situations, we believe excess bandwidth should be distributed to the former


ows �rst, as long as the latter's QoS guarantees are not violated. In this example,
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suppose the overall bandwidth is 1. At time t1 
ow 3 may have already achieved

t1=3 of goodput (its target share), whereas 
ow 2 has only t1=5 of goodput because

of a worse link. Then excess bandwidth should be allocated to 
ow 2 to help it reach

its target rate of 1/3, rather than being distributed evenly between 
ows 2 and 3.

In an error-free system, it has been proven [56] that as long as a 
ow's service

received in any backlogged period can be guaranteed such that

Wi(t1; t2) � ri(t2 � t1 � �i) (2.1)

where Wi(t1; t2) is the e�ective service received during (t1; t2), ri is the allocated

rate of the 
ow, t1 is the start time of a backlogged period, and �i is a non-negative

constant called latency, for burst-constrained tra�c with average rate less than or

equal to ri, the packet delay can be bounded. In addition, such a bound, independent

of other 
ows' behavior, is the same delay bound that a GPS-based fair queueing

algorithm with the same assigned rate ri can provide. Since the availability of excess

bandwidth can not be guaranteed by the network, the guaranteed worst case delay

bound to a 
ow can not be improved by providing it unassured excess bandwidth.

Therefore, in our wireless scheduling algorithm, for each 
ow i we try to achieve an

e�ective service curve ri(t� �i) instead of the GPS service curve in WFS and CIFQ.

In this way more excess bandwidth will be available for compensating 
ows with

bad links.
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Fourth, the time-stamping schemes of WFS and CIFQ are impractical for uplink

transmissions. Both of them are centralized algorithms, which should be run at the

base station. The base station is responsible for scheduling both downlink and uplink

packet transmissions. In WFS, the system virtual time, which is dependent on the

service progress of all the 
ows and maintained by the scheduler, is needed in time-

stamping the packets. For downlink transmissions such a process does not impose

any problem, because all the downlink 
ows are queued at the base station where

the scheduler is located and the global information maintained by the scheduler can

be easily retrieved by each 
ow. However, for uplink transmissions the packets are

queued at mobile hosts, to have the system virtual time, either each uplink 
ow

needs to monitor the service progress of all other 
ows, or the scheduler needs to

constantly broadcast the system virtual time to all the 
ows. Neither way can be

realized e�ciently. Furthermore, there is another problem with WFS. How does the

scheduler know the �nish times of the uplink packets? To do so, all the uplink 
ows

need to constantly send information of the �nish times to the scheduler, which will

require huge amount of signaling bandwidth and cause signi�cant transmission power

consumption at the mobile hosts. In CIFQ, when a 
ow becomes unbacklogged its

own virtual time is updated as the maximum of the system virtual time and its own

virtual time. Thus, it has the same problem as WFS in maintaining the system

virtual time for uplink 
ows. For the scheduling algorithms to be realizable, they

should have the following two properties: (i) if any time-stamping of the packets
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are used, the timestamps should not depend on the information of other 
ows;

(ii) the uplink 
ows do not need to send time-stamp information of each packet

to the scheduler, and the scheduler only needs to know whether an uplink 
ow is

backlogged.

2.2 System Model

We consider centralized scheduling in a wireless network, where a scheduler in a base

station is responsible for scheduling all the packet transmissions in the network. The

data 
ows being served may not be located at the base station. There are two types

of communication links in the system, error-free and error-prone. An error-free link is

just like a wireline link where packet error probability is zero. As in other scheduling

algorithms, a two-state Markov model is used for an error-prone wireless link. The

scheduler only di�erentiates the quality of an error-prone link between two states,

good or bad. The duration of each state is exponentially distributed. A link states

may be incorrectly estimated with a certain probability. The links are independent of

each other and the average durations of the good and bad states may not be the same

for di�erent links. Time is divided into �xed-length slots. In each time slot, only one


ow can transmit and a �xed number of bits can be transmitted. All regular data

packets have the same length of one time slot. Transmissions of a regular packet in

a good state have much higher probability of success than in a bad state. A regular

packet can be split into m (m = 2 or 3 should be su�cient) low rate packets with
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more coding protection. Having less information bits but the same total length as

a regular packet, a low rate packet has low transmission error probability in a bad

state. Packets of each 
ow requires in sequence delivery. For 
ows requiring reliable

delivery, a transmitted packet remains at the head of transmission queue until it is

successfully transmitted. We assume instant feedback on whether a transmission is

successful.

2.3 BGFS-EBA

2.3.1 Algorithmic Details

Here we present our proposed wireless scheduling algorithm, namely, Bandwidth-

guaranteed Fair Scheduling with e�ective excess bandwidth allocation (BGFS-EBA).

Each admitted 
ow i in the system has a target rate ri, which is the average

rate of goodput it would like to achieve. The sum of all the target rates should not

exceed the total available bandwidth R. The scheduler keeps track of the goodput

gi each 
ow i has achieved. Instead of trying to approximate the GPS service curves

as in CIFQ and WFS, we try to achieve the goodput target for each 
ow in any

backlog period as shown in (2.1) with gi(t1; t2) replacing Wi(t1; t2). As we have

already discussed previously, if such a condition can be satis�ed, the delay bound of

the 
ow can be guaranteed. Using the same terms as in CIFQ, a 
ow is considered

as leading, lagging, or in sync if its achieved goodput during the current backlog

28



period is larger than, smaller than, or the same as its target share, i.e. rit. Note

that although we use the same terms as in CIFQ, the reference system we are using

is di�erent from CIFQ. CIFQ compares the service received to the service a 
ow

would receive in an error-free SFQ system, which is dependent on the tra�c load.

Our de�nitions are based on comparison with the load-independent function rit.

The major philosophical di�erences between BGFS-EBA and CIFQ or WFS are

the following. First, we believe the network should be able to guarantee minimum

transmission bandwidth for some 
ows regardless of their link quality. Second, we

believe 
ows with better average link quality should not be over-provisioned with

excess bandwidth as in WFS and CIFQ. The excess bandwidth resulting from some


ows not using up its share should be allocated to the 
ows which lag behind their

goodput targets.

Each data 
ow has its own queue. When a packet arrives, it is simply put at the

end of the corresponding 
ow's queue. No time-stamping is performed.

To decide which packet to transmit next, the scheduling process is performed

in two phases. In the �rst phase, the scheduling decision is made on an idealistic

full-load error-free system. Besides the real data 
ows in the network, the scheduler

maintains a dummy 
ow which does not actually have packets to send but is only

used to �ll up the bandwidth. Suppose there are n�1 real data 
ows, each having a

target rate ri, and the total available bandwidth is R. Then the dummy 
ow's rate

will be R �Pn�1
i=1 ri. The 
ows in the idealistic system are called virtual 
ows. In
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Figure 2.2: Deadline calculation of a virtual 
ow

the idealistic system, all the virtual 
ows including the dummy 
ow are assumed to

be continuously backlogged. The virtual 
ows' imaginary packets, which have the

same �xed size as the real packets, are called virtual packets. The virtual packets

are assigned deadlines such that if all the virtual packets of a virtual 
ow i are

served before their deadlines, then at each virtual packet j's deadline di(j) the

service received by 
ow i is no less than ri �di(j). The deadline calculation is further

illustrated in Figure 2.2. The arrows in the �gure represent the deadlines. The

service curve s(t) = rit represents the service received by the 
ow if all the virtual

packets depart at their deadlines. Therefore, the deadline of a virtual packet is the

latest time that a virtual packet should depart for the 
ow to catch up with the

service curve.

In the �rst phase, the scheduler always schedules the virtual packet with the

earliest deadline. The scheduler then decides in the second phase whether a real

packet of the corresponding data 
ow should be sent. Since the virtual 
ows are
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always backlogged and the packet size is �xed, for 
ow i, the deadline of its virtual

packet j + 1 can be derived from the deadline of its virtual packet j as di(j + 1) =

di(j)+l=ri, where l is the packet size and ri is the target rate of 
ow i. Therefore, for

each virtual 
ow i the scheduler only needs to maintain one deadline, di, before which

the HOL (Head of the Line) virtual packet should be served. After a virtual 
ow's

HOL packet is scheduled, no matter which real 
ow's packet receives actual service

in the second phase, the deadline of the virtual 
ow is updated as di = di+l=ri. Since

we have
Pn

i=1 ri = R (including the dummy 
ow), using such a deadline assignment

and scheduling policy, it is easily shown that it is a schedulable system [18], that is,

all the virtual packets can meet their deadlines.

In the second phase, to determine how much a 
ow i is leading and lagging

its target rate, the scheduler keeps track of a parameter Gi called the normalized

goodput gap2, which is de�ned in (2.2).

Gi(t) =
gi(t)� rit

rit
(2.2)

where gi(t) is the goodput achieved by 
ow i up to t in the current backlog period.

Note that Gi(t) is normalized by the target goodput rit and it is a fraction which

represents how much a 
ow is leading and lagging compared with its target goodput.

gi and Gi are reset to zero at the beginning of each 
ow's backlog period. In CIFQ

and WFS, lags are not normalized by a 
ow's rate. Hence 
ows with di�erent rates

2Note again the di�erence between the de�nitions of gap in BGFS-EBA and lag in CIFQ.
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but the same absolute lag will be treated the same way. We do not believe this

is reasonable since two 
ows, say, one with a rate of 1Mbps and the other with a

rate of 1bps, both having a lag of 100 bytes, will be treated the same way in CIFQ

and WFS, but obviously they are lagging behind their target rates in very di�erent

degrees of severity.

Figure 2.3 shows the complete scheduling operation. The �rst three blocks are

the operations performed in the �rst phase as described above. When a virtual 
ow is

picked and its real 
ow is backlogged, normally, if the 
ow's link is in a good state its

packet will be transmitted; otherwise, it will give up the current service opportunity

to some other 
ow with a good link. However, there are some exceptional cases.

A threshold thi is set for each 
ow, where �1 � thi � 0. A 
ow with a bad

link may still transmit if its gap falls below its threshold or it can not �nd any

other 
ow with a good link. Setting such a threshold guarantees a minimum trans-

mission bandwidth for the 
ows. Whenever a 
ow lags behind its target goodput

substantially, the 
ow will start to transmit even in a bad state. In this way, the


ows experiencing long duration of bad link state will not be totally deprived of

transmission. The smaller the threshold, the smaller the guaranteed transmission

bandwidth. Although this may cause lower overall bandwidth e�ciency in terms

of total goodput, it is necessary for the scheduler to have the ability to trade o�

between e�ciency and link-state-independent bandwidth guarantees.
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Figure 2.3: Flow chart of the scheduling operations
33



When it is the turn for a backlogged real 
ow i to transmit according to the

idealistic system and its link is in a good state, it will give up its service opportunity

to some other 
ow if all of the following conditions are satis�ed.

1. gi > 0, i.e. it is leading.

2. gi + li(HOL) � ri(di � ti) where ti is the start time of the current backlog

period of 
ow i, di is the current (updated in phase one already) deadline of

the corresponding virtual 
ow.

3. There exists at least one 
ow with negative gap and a good link or one 
ow

whose gap is below its threshold.

The second condition, which corresponds to the decision diamond marked with

* in Figure 2.3, stipulates that giving up the current service share will not jeop-

ardize 
ow i's own goodput guarantee assuming that its next transmission will be

successful. Since 
ow i will take its turn again in the idealistic system before di, if

the transmission is successful, 
ow i's goodput till di will be gi + li(HOL), where

li(HOL) is the length of the information bits in its HOL packet. The inequality

ensures that by di 
ow i's goodput will still stay above its target goodput. Since the


ow is leading, it must have received excess bandwidth or some other 
ow's band-

width before. To compensate other lagging 
ows it should give up its lead. Again,

the reason here is that as long as we can meet the 
ow's target rate, it is receiving

its fair share.
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Whenever a virtual 
ow is picked but its real packet queue is empty, such service

opportunity represents the excess bandwidth not being fully used by the 
ow. The

dummy 
ow never has any packet to transmit, therefore, when it is scheduled, the

service opportunity also represents excess bandwidth. The scheduler searches for a

nonempty 
ow with the smallest gap among 
ows in the following ordered sets to

receive such excess bandwidth.

1. Any 
ow with a good link and whose gap is below its threshold.

2. Any 
ow with a negative gap and a good link.

3. Any 
ow whose gap is below its threshold.

4. Any 
ow with a good link.

5. All nonempty 
ows.

If none of the above 
ows exists, i.e., all the 
ow queues are empty; wait for a new

packet arrival. Note that any 
ow with a negative gap, especially a 
ow whose

gap has fallen below its threshold, has precedence in receiving excess bandwidth.

Therefore, when a 
ow can not meet its gap threshold, it will not only transmit

aggressively in its own turn, but also have more chance of receiving excess bandwidth.

The extra transmission e�ort allocated to the lagging 
ows is aimed at o�setting the

adverse e�ect of bad link quality.
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The process of searching for a 
ow to receive the service opportunity given up

by a leading 
ow follows the �rst two steps above. If none of the 
ows quali�es, the

leading 
ow will redeem the service opportunity and transmit a packet of its own.

One point not speci�ed in the 
ow chart is that to improve bandwidth e�ciency,

only low rate packets will be transmitted in a bad state. Therefore, when the sched-

uler decides to transmit in a bad state, it �rst checks the 
ow's HOL packet. If it

is a regular packet, it splits it into m low rate packets, and transmits one of them.

The rest are inserted at the HOL of the 
ow queue.

There are two major reasons why we separate the scheduling operations into two

phases and use a dummy 
ow. One is that we need to explicitly identify which part

of the bandwidth is excess bandwidth, so that we can allocate it to 
ows which need

it most. In CIFQ and WFS the excess bandwidth is implicitly distributed among all

the 
ows. The other reason is that when all the 
ows are error-free we would like to

avoid the virtual clock penalty e�ect [62] on 
ows receiving excess bandwidth while

some other 
ows are not backlogged.

Note that since no time-stamping for the real packets is used and the deadlines

of virtual 
ows can be iteratively calculated by the scheduler, BGFS-EBA does not

require time-stamping which is impractical. An uplink 
ow only needs to notify

the scheduler when it becomes unbacklogged or backlogged. In fact the information

of whether a 
ow is backlogged or not is necessary for any scheduling algorithm.

36



Furthermore, the scheduler only maintains one parameter for each 
ow, namely, the

normalized goodput gap, instead of four parameters in CIFQ.

2.3.2 Analytical Observations

2.3.2.1 Minimum Bandwidth and Goodput Guarantees for Error-prone

Flows

A virtual 
ow i is guaranteed a service rate ri in the idealistic system. Whenever

the corresponding real 
ow's average goodput rate falls below ri(1 + thi), the real


ow will send at least at rate ri, and ri � ri(1 + thi). Real 
ow i may send at a rate

less than ri only when its average goodput rate is larger than ri(1+ thi). To achieve

such a goodput rate, at least the same amount of average transmission bandwidth

is required. Therefore, for a continuously backlogged 
ow i, over a su�ciently long

time, its average allocated transmission bandwidth is at least ri(1 + thi). Conse-

quently, if the average error probability of 
ow i's low rate packet, with a code rate3

of �, in a bad state is ei, 
ow i will be guaranteed a long-term average goodput rate

of ri�(1 + thi)ei, even if the 
ow's link is always in a bad state.

2.3.2.2 Balance between E�ort-fair and Outcome-fair

In the long run, 
ows with worse link quality that are not able to meet target

goodput rates are guaranteed minimum transmission bandwidth. Flows with better

3The ratio of the information length to the total length.
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links that are able to meet target goodput rates are guaranteed no more than their

target rate if there are lagging 
ows. Excess bandwidth is allocated to compensate


ows with worse link quality. Thanks to the above mechanisms, the algorithm

manages to strike a balance between e�ort-fair and outcome-fair. First, a fraction

of the transmission bandwidth is used to guarantee minimum transmission e�ort

for the 
ows to realize e�ort-fair. In addition, when the network is lightly loaded

and much excess bandwidth is available, the algorithm tries to realize outcome-fair

without seriously degrading the overall bandwidth e�ciency.

2.3.2.3 Delay Bound for Error-free Flows

Theorem 1 For a 
ow i with an error-free link, if its tra�c is constrained by a

token bucket (�i; ri), where �i is the bucket depth and ri is the token rate, which is

equal to 
ow i's target rate, 
ow i's packet delay Di can be bounded as

Di � �i

ri
+
2l

ri
+

l

R
(2.3)

Proof: It is proven in [56] that when a 
ow's received service can be guaranteed

in any backlog period as shown in (2.4),

Wi(t1; t2) � ri(t2 � t1 � �i) (2.4)
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where Wi(t1; t2) is the amount of e�ective service received during (t1; t2), ri is the

allocated rate of the 
ow, t1 is the start time of a backlogged period, and �i is a

non-negative constant called latency, and its tra�c is token bucket constrained with

parameters (�i; ri), then the packet delay can be bounded as shown in (2.5).

Di � �i

ri
+ �i (2.5)

In BGFS-EBA, it is easily shown that a virtual 
ow i is guaranteed service as in

(2.4) with �i = l=ri. (This is actually the dotted line with a slope of ri in Figure 2.2.)

For real error-free 
ow i, after the �rst packet of a backlog period is transmitted,

the subsequent packets are guaranteed to be transmitted at rate ri; therefore, the

service received by the real 
ow i can also be lower bounded in the form of (2.4).

We only need to determine the latency �i for the real 
ow i. The latency is in fact

the virtual 
ow i's latency plus the worst-case delay from the arrival of the �rst real

packet of a backlog period to the time its corresponding virtual 
ow is scheduled

again in the idealistic system. It is not di�cult to show that such worst-case delay

is l=R + l=ri. Therefore, the latency for real 
ow i is l=R + 2l=ri. Hence the delay

bound in (2.3) is established.
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2.4 Numerical Results

To assess the performance of our proposed wireless scheduling algorithm, we im-

plemented both CIFQ and BGFS-EBA in Network Simulator-2 [30] and conducted

simulations to compare the two algorithms.4

To simulate the fact that each link state corresponds to a range of BER or SNR

instead of a single point, we let all the packet error probabilities vary over a range.

We denote by u(a; b) a uniform distribution between a and b. The parameters used in

the simulations are as follows. The packet size is 200 bytes. The error probabilities of

a regular (uncoded) packet are distributed u(0; 0:2) and u(0:8; 1) in a good state and

a bad state, respectively. In BGFS-EBA, when needed, a regular packet is split into

two low rate packets, having 100 bytes of information each. The error probabilities of

a low rate packet are distributed as u(0; 10�3) and u(0; 0:1) in a good state and a bad

state, respectively. The duration of each state is exponentially distributed. A good

(or bad) state can be wrongly estimated as a bad (or good) state with probability

0:1. The total available bandwidth is 1Mbytes=s. The duration of each test equals

the transmission time of two million packets. All 
ows require reliable delivery.

4Since some algorithmic details of WFS are not clearly speci�ed in the paper, we did not
implement WFS.
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Table 2.1: Simulation results in example I

Flow 1 Flow 2 E�ciency

e�ort goodput e�ort goodput

CIFQ (� = 0) 193.3 89.9 726.0 639.8 72.0%

CIFQ (� = 0:9) 115.5 45.7 799.1 702.5 74.8%

BGFS (th = �0:3) 590.8 278.4 409.2 362.8 64.1%

BGFS (th = �0:5) 526.4 250.0 473.6 408.0 65.8%

2.4.1 Example I

We start with a very simple example to demonstrate the idea of guaranteeing min-

imum transmission bandwidth and goodput. In this example, there are only two


ows in the network. Each 
ow has a target rate of 500Kbytes=s. The average

state durations of 
ow 1's link are 0.01s and 0.09s for the good and the bad states,

respectively. The average durations of 
ow 2's link are 0.09s and 0.01s for the good

and the bad states, respectively. Flows 1 and 2 both have greedy tra�c sources, i.e.,

they are always backlogged. The results of the simulations are listed in Table 2.1.

All the numbers except the e�ciency are the average rates in Kbytes=s. The

parameter �, as de�ned in CIFQ, is the minimum fraction of service retained by a

leading session. The e�ciency is de�ned as the total goodput rate divided by the

total available bandwidth, i.e. 1Mbytes=s. In BGFS-EBA, both 
ows have the same

threshold.

In CIFQ, because a 
ow always gives up its bandwidth to others when its link

is in a bad state, there is no link-independent transmission bandwidth guarantee

for a 
ow with a very poor link. Note that in CIFQ, 
ow 1 receives very little
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bandwidth and goodput. Even as � = 0, where the lagging 
ow 1 has the most

transmission opportunities in CIFQ, its e�ort rate is still less than 40% of its target

rate. However, in BGFS-EBA, a 
ow is guaranteed certain amount of bandwidth

regardless of its link quality (e�ort-fair). Beyond the guaranteed bandwidth, 
ow 1

is given more transmission e�ort to compensate for its poor link quality to help it

achieve outcome-fair. Therefore, we see that 
ow 1 receives far more bandwidth and

goodput in BGFS-EBA than in CIFQ. Also, 
ow 1 receives more bandwidth when

th = �0:3 than th = �0:5.

We notice that the total e�ort rate of CIFQ is smaller than the total available

bandwidth. The reason is that in CIFQ the scheduler will stay idle if it can not �nd

any 
ow with a good link. Therefore, a small amount of bandwidth is wasted on

idling. Also note that BGFS-EBA's overall bandwidth e�ciency in terms of total

goodput achieved is lower than that of CIFQ. This is the tradeo� for providing

minimum bandwidth guarantees. In fact, this is an extreme case, where 
ow 1's

link quality is very bad and its target rate is quite high. In more general cases, the

e�ciency di�erence between the two algorithms will not be so big.

2.4.2 Example II

In the second example we show a more complex scenario. There are �ve greedy 
ows

in the system. Table 2.2 shows the target rates and the average link state durations

of each 
ow.
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Table 2.2: Flow parameters in example II

Target Rate (Kbyte/s) Avg. Link State Duration (s)

good state bad state


ow 1 200 0.03 0.07


ow 2 100 0.03 0.07


ow 3 200 0.09 0.01


ow 4 200 0.09 0.01


ow 5 100 0.09 0.01

Table 2.3: CIFQ's results in example II

� = 0 � = 0:3 � = 0:7

e�ort goodput e�ort goodput e�ort goodput


ow 1 249.9 156.4 160.8 111.0 151.3 105.9


ow 2 124.9 71.7 124.8 80.0 124.8 80.4


ow 3 249.9 225.2 284.0 251.9 290.3 255.9


ow 4 249.9 225.2 282.3 250.3 284.3 251.8


ow 5 125.0 115.6 147.5 130.3 148.8 130.4

e�ciency 79.4% 82.3% 82.4%

Table 2.4: BGFS-EBA's results in example II

th = �0:2 th = �0:3 th = �0:5

e�ort goodput e�ort goodput e�ort goodput


ow 1 279.8 200.1 278.3 199.5 277.9 199.3


ow 2 149.8 101.8 145.5 101.0 143.9 100.2


ow 3 227.8 201.5 230.1 204.1 231.0 205.3


ow 4 227.5 201.4 230.0 204.0 231.0 205.2


ow 5 115.0 100.7 116.1 102.3 116.5 103.2

e�ciency 80.6% 81.1% 81.3%
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Table 2.5: CIFQ's results in example III

� = 0 � = 0:3 � = 0:7

e�ort goodput e�ort goodput e�ort goodput


ow 1 283.9 177.4 173.6 128.2 164.2 118.4


ow 2 142.4 83.1 140.3 84.2 134.1 85.7


ow 3 285.0 265.3 341.0 304.7 347.9 309.0


ow 4 285.5 266.1 341.6 305.3 350.1 310.8

e�ciency 79.2% 82.2 % 82.4%

The simulation results are shown in Tables 2.3 and 2.4. For CIFQ, the average

goodput rates of the 
ows with better links (
ow 3, 4 and 5) are more than 10%

higher than their target rates while 
ows 1 and 2 have average goodput rates far from

their target rates. Just as we have discussed previously, this is due to the way excess

bandwidth is distributed and the discrimination of CIFQ against 
ows with worse

average link quality. Therefore, the 
ows with better links are over-provisioned with

transmission e�ort.

2.4.3 Example III

In the third example we eliminate 
ow 5 from example II to see how the bandwidth

will be distributed when there is more than enough bandwidth for 
ows to reach

their target rates. No other parameter is changed. The results are show in Table

2.5 and Table 2.6.

For CIFQ, even when a su�cient amount of bandwidth is available, 
ow 1 still

misses its goodput target, while 
ows 3 and 4 receive far more than their fair shares.

In BGFS-EBA, after the scheduler manages to satisfy everyone's goodput target,
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Table 2.6: BGFS-EBA's results in example III

th = �0:2 th = �0:3 th = �0:5

e�ort goodput e�ort goodput e�ort goodput


ow 1 276.4 200.0 276.1 199.6 276.1 199.6


ow 2 159.1 116.6 159.1 116.7 159.1 116.7


ow 3 282.4 249.0 282.6 249.4 282.6 249.4


ow 4 282.1 249.1 282.2 249.3 282.2 249.3

e�ciency 81.5 % 81.5 % 81.5 %

Table 2.7: Parameters in example IV
Target Rate Tra�c Avg. Link State Duration (s)

(Kbyte/s) good state bad state


ow 1 200 Exponential on/o� error-free


ow 2 100 Poisson error-free


ow 3 200 Poisson 0.09 0.01


ow 4 200 Greedy 0.09 0.01


ow 5 200 Greedy 0.03 0.07


ow 6 100 Greedy 0.09 0.01

the scheduler favors 
ows 3 and 4 in allocating the rest of the excess bandwidth.

It also matches BGFS-EBA's policy that when there is no lagging 
ow, 
ows with

positive lags can receive excess bandwidth. Since every 
ow's target has been met,

the scheduler now tries to maintain high bandwidth e�ciency.

2.4.4 Example IV

We now demonstrate that the delay bounds for error-free 
ows can be guaranteed.

In this example there are 6 
ows, which is fully loaded with the sum of all the target

rates equal to the bandwidth. Table 2.7 shows the parameters of the tra�c and

the links. The two Poisson sources both have an average rate of 200Kbytes=s. The
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Table 2.8: Packet delays of BGFS-EBA in example IV

th = �0:3 th = �0:5 Analytical

max. delay avg. delay max. delay avg. delay bound


ow 1 0.0098 0.0009 0.0096 0.0007 0.0122


ow 2 0.019 0.0023 0.018 0.0018 0.0242


ow 3 0.104 0.014 0.11 0.015 n/a

exponential on/o� source's average on time is 500ms and average o� time is 100ms.

When it is on, the sending rate is 400Kbytes=s. To provide any delay guarantees

the tra�c bursts should be constrained. Flows 1, 2 and 3 are all token-bucket-

constrained. The rate of each 
ow's token bucket is just its target rate. The depth

of the bucket is 2000 bytes, which is equal to the length of ten packets. In BGFS-

EBA, if a regular packet is split into low rate packets, its transmission is considered

complete only when all its low rate packets have been received.

The time unit used in the tables is seconds. The analytical bounds are calculated

based on (2.3). The simulation results in Table 2.8 show that for error-free 
ows, all

the delays are within the analytical bounds. Compared with the results in Table 2.9,

we see that the delays for error-free 
ows in the two algorithms are similar. However,

for error-prone 
ow 3, the delays in our proposed algorithm are smaller. This is

because in BGFS-EBA, error-prone 
ows send their packets more aggressively.

Remarks: Although in the experiments shown in this paper the thresholds of

all the 
ows are set to be the same, it is not necessary for all the 
ows to have the

same threshold. In fact, to improve bandwidth e�ciency, higher thresholds can be

set for 
ows with better links and lower thresholds can be set for 
ows with worse
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Table 2.9: Packet delays of CIFQ in example IV

� = 0:1 � = 0:3

max. delay avg. delay max. delay avg. delay


ow 1 0.0095 0.0008 0.0096 0.00077


ow 2 0.019 0.0024 0.0191 0.0026


ow 3 0.276 0.057 0.277 0.0386

links. In general, to maintain high e�ciency, the thresholds of 
ows with poor links

should not be set too aggressively. Also, for a 
ow with high priority, the threshold

can be set to zero or close to zero, so that most of the time the 
ow will not give

up its service opportunity even when its link is in a bad state. Whereas for a 
ow

with no bandwidth guarantee, a threshold of �1 can be used, so that the 
ow will

always give up its service opportunity when its link is in a bad state. The threshold

may also be changed dynamically according to the link quality and tra�c load. How

to design a proper admission control scheme and combine it with thresholds setting

to maintain certain e�ciency target, and how to dynamically adjust the thresholds

will be subjects of future research.
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Chapter 3

Wireless Packet Scheduling for Links with

Multiple States

3.1 System Model

We consider a typical cell-structured wireless network, where multiple users/
ows

communicate with a base station responsible for scheduling transmissions. Trans-

mission bandwidth is shared by the users (or 
ows) in a time-division-multiplexing

manner, where time is slotted and only one 
ow is served in each time slot. Adap-

tive modulation and coding may be used. Each wireless link between a user and the

base station is time-varying with multiple states determined by the link's physical

capacity and the particular error-correction code and modulation level used. The

parameters used to characterize a state of a link include e�ective output and state

probability. The e�ective output is the number of useful information bits successfully

delivered in the particular state in one slot. We assume that this parameter has taken
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into account the coding overhead, the modulation level, and the corresponding error

rate associated with the link state. The state probability is the probability of being

in the state in each slot. We focus on fast-fading scenarios where the link states

in two di�erent slots can be considered independent of each other. Without loss of

generality, we assume that the marginal distribution of the link states is stationary

and ergodic. Assuming no interference and each user's location and moving speed

to be independent of each other, all the links are independent of each other and may

have di�erent link statistics.

There are two types of data 
ows, delay-sensitive 
ows and best-e�ort 
ows.

Each delay-sensitive 
ow has two target parameters, delay bound and delay vio-

lation probability bound. The objective of scheduling a delay-sensitive 
ow is to

guarantee that the probability of the 
ow's tra�c delayed by more than the delay

bound is no larger than the delay violation probability bound. To provide any delay

guarantee, the incoming tra�c must be constrained in bursttiness and rate. We con-

sider token-bucket constrained tra�c for delay- sensitive 
ows. For best-e�ort 
ows,

the scheduler tries to achieve high bandwidth e�ciency while maintaining LT-LQW

outcome-fair among the 
ows. Since the upper layer packets are usually large and

need to be segmented at the wireless link layer, from the link layer's view point,

the incoming tra�c is considered as bit-streams. Each 
ow has its own queue and

in�nite bu�er is assumed.
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3.2 Providing Delay Violation Bound for a Single

Delay-Sensitve Flow

First we discuss how to provide statistical delay violation bounds to a single 
ow

whose link has multiple states. As time is slotted, we model the system as a discrete-

time system with 
uid-modeled tra�c arriving and departing the queue only at the

boundaries of time slots. The model is validated with reasonable requirements that

the bits arriving in one slot can not be served in the same slot, and the bits served

in a slot is said to complete the service only at the end of the slot. In this section

all the variables that represent time are in the unit of a time slot. For a link I

with L states, denote the e�ective output and state probability of state l by uIl and

pIl, respectively. Denote the e�ective service received by the corresponding 
ow I

during an interval [�; � + t] by WI(t), and denote the total incoming tra�c during

the same interval by AI(t). If AI(t) and WI(t) satisfy

AI(t) �st BI(t) (3.1)

WI(t) �st SI(t) (3.2)
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where BI(t) and SI(t), called statistical tra�c envelope and statistical service enve-

lope, respectively, are non-negative non-decreasing random processes, and �st rep-

resents stochastic inequality. Then given a d0, the probability of a bit being delayed

for more than d0, PfDI > d0g is bounded as follows

PfDI > d0g � Pfmax
t�0

fBI(t)� SI(t+ d0)g > 0g (3.3)

where DI is the delay experienced by a bit. We utilize the above theorem, which is

proven in [47], to �nd a solution for bounding the delay violation probability in the

practical scenario that we are interested in.

In practice, statistical tra�c envelopes are di�cult to enforce. In this paper

we consider deterministic tra�c envelopes, in particular, token bucket constrained

tra�c. For a 
ow regulated by a token bucket with parameter set (�; �), where � is

the bucket depth and � is the token �lling rate, its AI(t) satis�es

AI(t) � � + �t (3.4)

Note that the minimal service time unit is one slot and every bit only completes

service at the end of a slot. Suppose we allocate one slot to 
ow I every M slots.

Now the problem we need to solve is: Given (�; �), d0 and delay violation probability

bound Pv, what's the minimal bandwidth , i.e. the largest M , which needs to be

allocated to the 
ow in order to guarantee that PfDI > d0g � Pv?
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Without loss of generality, suppose at time 0, 
ow I's queue is empty. Then for

any t > 0,

AI(t) � � + �t (3.5)

WI(t) =

b t

M
cX

i=1

Ui (3.6)

where Ui is the information bits transmitted by the 
ow in the ith transmission/service,

and b�c is the largest integer that is no larger than �. Note in our system model,

Ui, i = 1; 2; ::: are i.i.d. Let tra�c envelope BI(t) and service envelope SI(t) be

BI(t) = �+ �t (3.7)

SI(t) =

b t

M
cX

i=1

Ui (3.8)

Then,

PfBI(t)� SI(t+ d0) > 0g = Pf�+ �t�
b t+d0

M
cX

i=1

Ui > 0g (3.9)

Let b t+d0
M
c = n and t+d0

M
� b t+d0

M
c = �. Then

t =Mn+M� � d0 (3.10)

Following (3.9) and (3.10),

PfBI(t)� SI(t+ d0) > 0g (3.11)
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� Pf� + �Mn + �M� � �d0 �
nX
i=1

Ui > 0g (3.12)

= Pf
nX
i=1

(�M � Ui) > �d0 � �M� � �g (3.13)

� Pf
nX
i=1

(�M � Ui) > �d0 � �M � �g (3.14)

The last step above follows because 0 � � < 1. Since the average arrival rate of

the information data is �, and the average departure rate is EfUig
M

, to have a stable

queue we should have

�M < EfUig (3.15)

Let Vi = �M � Ui, and �d0 � �M � � = a. Then (3.14) becomes

PfBI(t)� SI(t+ d0) > 0g � Pf
nX
i=1

Vi > ag (3.16)

where EfVig < 0. Since the 
ow's service period is M slots, for the scheduler

to guarantee the delay violation probability bound, d0 should be no less than M .

Therefore, for any t > 0, there exists an integer n � 1 according to mapping (3.10).

Following (3.16) we have

Pfmax
t�0

fBI(t)� SI(t+ d0)g > 0g � Pfmax
n�1

f
nX
i=1

Vig > ag (3.17)

Now we try to �nd an upper bound for (3.17) by applying a corollary of Wald's

identity [24]. The corollary is as follows. Let Xi, i = 1; 2; ::: be i.i.d, and EfXig < 0.
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Let �(r) = ln(Efexp(rXi)g) be the semi-invariant moment generating function of

each Xi. Let Sn = X1 + :::+Xn. If there exists an r� > 0 such that �(r�) = 0, then

given a constant b � 0,

Pfmax
n�1

fSng � bg � exp(�r�b) (3.18)

The proof is given in [24].

Since Vi, i = 1; 2; ::: are i.i.d. and EfV g < 0, if we have

a = �d0 � �M � � � 0 ; (3.19)

then following (3.3), (3.17) and (3.18), we have

PfDI > d0g � Pfmax
t�0

fBI(t)� SI(t+ d0)g > 0g

� Pfmax
n�1

nX
i=1

Vi > ag

� exp(�r�a) (3.20)

where r� is the positive root of the equation ln(Efexp(rV )g) = 0. Therefore, given

M and d0, (3.20) is an upper bound (and a reasonable estimate) of the delay violation

probability. In particular, for a link I with L states,

ln(Efexp(rV )g) = lnf
LX
l=1

pIl � exp[r(�M � uIl)]g (3.21)

where uIl and pIl are the e�ective output and state probability of state l, respectively.
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From the above analyses we make the following conclusion. Given delay violation

probability bound Pv, and all the other necessary parameters, if we �nd an M � 1

such that (3.15), (3.19) and the following conditions are all satis�ed,

expf�r�(�d0 � �M � �)g � Pv (3.22)

the delay violation probability bound can be guaranteed. Note r� is the positive

root of the semi-invariant moment generating function of each Vi = �M � Ui.

Note r� > 0 and Pv � 1; therefore, condition (3.22) implicitly requires that

�d0 � �M � � � 0. That is, condition (3.19) is incorporated in (3.22) already.

Theorem 2 Let a 
ow's tra�c be token-bucket constrained with bucket parameters

(�; �), and the number of information bits it can send in each service slot i be Ui, i =

1; 2:::, which are i.i.d. Given a delay bound d0 and a delay violation probability bound

Pv, we can guarantee that PfDI > d0g � Pv by guaranteeing that the 
ow receives

at least one service slot in every M slot time, if both of the following conditions are

satis�ed. 8>><
>>:

M < EfUig
�

expf�r�(�d0 � �M � �)g � Pv

(3.23)

where r� is the positive root of ln(Efexp[r(�M � Ui)]g).

Following the above theorem, to guarantee a delay violation probability bound

with the least required bandwidth, we just need to pick the largest M that satisfy

the conditions in (3.23).
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Now for a single 
ow, the delay violation bound requirement becomes equivalent

to the requirement of guaranteeing a service e�ort period M . (Note that it is not

the actual e�ective output.) The next question is: when there are Nd 
ows, how do

we guarantee a service e�ort period MI for each 
ow I, I = 1; 2; :::; Nd? In fact, it

can be easily shown [18] that as long as MI 's satisfy

(

NdX
I=1

1

MI

) � s
�
� Bd (3.24)

where s is the slot size in bits, � is the slot duration, and Bd is the bandwidth avail-

able to the Nd delay-sensitive 
ows, such service e�ort guarantees can be provided

by using an EDF (earliest-deadline-�rst) based scheduling. We will elaborate more

on this when we discuss scheduling multiple delay-sensitive and best-e�ort 
ows

simultaneously in section 3.4.

3.3 Issues of Scheduling Best-E�ort Flows

For best-e�ort tra�c, no strict guarantees are provided. Nevertheless, the network

still needs to facilitate fair sharing of the resource and avoid large di�erences in

di�erent 
ows' goodputs.

In most of the existing wireless scheduling, since the links are modeled as either

error-free or 100% in error, only transmission in error-free state is possible. There-

fore, improving e�ciency is not a concern in such a scenario. Maintaining both
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short-term and long-term fairness has been the main focus of the previous research.

However, things are more complicated when links have multiple e�ective throughput

levels. For example, suppose there are two 
ows with the same average link statis-

tics and the same share of bandwidth. At the beginning of a slot, 
ow one has less

goodput than 
ow two, and 
ow one can send more information bits, if served in

this slot, because of better instantaneous link quality. Which 
ow should be chosen

to receive service? Choosing 
ow two improves bandwidth e�ciency, while choosing


ow one improves fairness in terms of e�ective goodput level. Furthermore, links

may be di�erent not only in instantaneous quality but also average quality. More

service opportunities need to be assigned to 
ows with inferior links to ensure that

they have similar goodput levels as the others. However, this will decrease band-

width e�ciency. On the other hand, if the scheduler always chooses to serve the


ow with the best instantaneous quality, some 
ows may be starved.

In wireline networks transmission outcome is always consistent with transmission

e�ort. However, in wireless networks, the same amount of transmission e�ort may

result in di�erent outcome, due to users' di�erent link qualities. Consequently, as we

have discussed, there are two types of fairness notions, e�ort-fair and outcome-fair.

As for end users, the e�ective service received is directly related to the useful data

(outcome) sent/received, not the bandwidth (e�ort) it received. Therefore, guar-

anteeing only e�ort-fair without considering the actual outcome is not meaningful.

On the other hand, guaranteeing only outcome-fair irrespective of the link quality
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di�erences may result in very low bandwidth e�ciency. We believe that the fairness

notion should be based on outcome and also related to link qualities. Since the exact

amount of any short-term outcome depends on the instantaneous link status which is

changing randomly, for fast-changing links with multiple instantaneous throughput

levels, it is very di�cult, if not impossible, to maintain short-term fairness based

on outcome. Guaranteeing short-term e�ort-fairness is achievable by scheduling


ows just according to classical wireline scheduling policies that provide isolation

mechanisms among 
ows. However, such isolation prevents 
ows from giving up

transmission opportunities to other 
ows with better instantaneous link qualities,

which may cause low bandwidth e�ciency. In all, maintaining short-term fairness

for best-e�ort 
ows in wireless networks is impractical and unnecessary. Following

the above reasoning, we propose a new fairness notion, called long-term link-quality-

weighted outcome-fairness, which is de�ned as follows. Considering two continuously

backlogged 
ows over a su�ciently long time interval T , if the average e�ective out-

put levels of the two 
ows' links are �O1 and �O2, respectively; and the total e�ective

output achieved, W1(T ) and W2(T ) satisfy

����W1(T )

w1
�O1

� W2(T )

w2
�O2

���� < � (3.25)

where � is a small constant, and w1 and w2 are generic bandwidth weights, we say

LT-LQW outcome-fair is achieved.
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Denote the total available bandwidth by Bw, of which Bd is allocated to delay-

sensitive 
ows. The bandwidth available to best-e�ort 
ows is thus Bb = Bw �Bd.

Each best-e�ort 
ow J is assigned a generic bandwidth weight wJ . We assume that

the weights are determined by some call-level1 bandwidth allocation module that

may have already taken into consideration each 
ow's tra�c demand and importance

level. Denote by �OJ the average e�ective output that can be achieved on a link J in

one time slot, and s the slot size in bits. According to the call-level allocation with

perfect isolation among 
ows, each 
ow J should receive BJ = Bb � wJ=(
PNb

I=1wI)

of bandwidth, and, consequently, achieves e�ective goodput at

rJ = BJ

�OJ

s
(3.26)

where Nb is the total number of best-e�ort 
ows. We call rJ , which represents

estimated goodput level the network operator would like 
ow J to achieve without

considering packet-level adaptation, the goodput target of 
ow J .

It is easy to see that (3.25) is equivalent to the following.

����W1(T )

r1
� W2(T )

r2

���� < � (3.27)

To achieve LT-LQW outcome-fair, 
ows' goodput levels should be in proportion to

their average link qualities. As 
ows with worse links have smaller goodput targets

1compared to the actual scheduling at the packet-level
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than those with the same bandwidth weights but better links, LT-LQW outcome-

fair facilitates more e�cient use of bandwidth than pure outcome-fair. Furthermore,

this fairness notion focuses only on long-term performance. As no strict short-

term fairness is required, it gives the packet scheduler more freedom in improving

bandwidth e�ciency by selectively scheduling transmissions on links with better

instantaneous qualities.

If maximizing the bandwidth e�ciency is the sole objective of packet scheduling,

the scheduler just needs to always schedule the 
ow with the best instantaneous link

quality to transmit in each time slot. However, as fairness must also be considered,

the objectives of scheduling for best-e�ort 
ows should be multi-dimensional. First,

the scheduling policy should provide certain minimal goodput level (its target good-

put) for each 
ow. Second, the policy should try to maintain LT-LQW outcome-fair.

Third, the policy should try to achieve high bandwidth e�ciency while maintaining

fairness properties.

We propose a simple scheduling scheme for best-e�ort 
ows and show its e�ec-

tiveness in achieving the above objectives by intuitive reasoning and simulations.

The algorithmic details are presented in the next section as a part of the complete

scheduling algorithm for both delay-sensitive and best-e�ort 
ows.
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3.4 Scheduling Algorithm for Delay-Sensitive and

Best-E�ort Flows

The complete algorithm for scheduling both delay-sensitive and best-e�ort 
ows is

presented in Figure 3.1, where the 
ow sets A, B, C, D are de�ned as follows.

A = fall 
owsg (3.28)

B = fbacklogged best-e�ort 
owsg (3.29)

D = fbacklogged delay-sensitive 
owsg (3.30)

C = B [ D (3.31)

The scheduling process is performed in two phases. In the �rst phase, the schedul-

ing decision is made on an idealistic full-load error-free system. Each real 
ow,

best-e�ort or delay-sensitive, has a corresponding virtual 
ow in the error-free sys-

tem. The virtual 
ows are assumed to be always backlogged. Each virtual 
ow J

is assigned bandwidth (service rate) BJ . We have
PN

J=1BJ � Bw, where Bw is the

total available bandwidth, and N is the total number of users. Each virtual 
ow J

maintains a deadline �J . When the scheduler starts to work, each 
ow's deadline

is initialized as �J = s=BJ , where s is the total number of bits that can be trans-

mitted in one time slot when it is error-free. In the �rst phase, the scheduler always
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Scheduling Procedure: (when C 6= ;)

1. id = fi jmin�i : i 2 Ag;

2. �id = �id +
s

B
id

;

3. if (id 2 D) then

4. sid = id;

5. else if (id 2 B) then

6. if (gid < t) then

7. sid = id;

8. else

9. fid = fi jmaxOi : gi � gid; Oi � Oid; i 2 Bg;

10. if (fid exists) then

11. sid = fid;

12. else

13. sid = id;

14. end if

15. end if

16. else (// id is not backlogged)

17. fid = fi jmin gi : i 2 Bg;

18. if (fid exists) then

19. sid = fid;

20. else

21. sid = fi jmaxOi : i 2 Dg;

22. end if

23. end if

24. sid transmits;

25. if (sid is a best-e�ort 
ow) then

26. gsid = gsid +
data sent

r
sid

;

27. end if

28. t = t+ s

Bw

;

end.

Figure 3.1: Pseudo code of the scheduling procedure
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chooses to serve the virtual 
ow with the smallest deadline. To avoid unwanted syn-

chronization, ties of deadlines are broken randomly. Regardless of which real 
ow is

served in the second-phase scheduling decision, after a virtual 
ow is picked in the

�rst phase, its deadline �J is updated as �J = �J + �J , where �J = s=BJ . Without

loss of generality, suppose the virtual 
ows become backlogged at time t = 0. Since

PN

J=1
BJ � Bw and the service unit is �xed, it is proven [18] that in the above

system each 
ow J will be served at least once for every �J , and the total amount

of service received by the 
ow is at least m�JBJ at t = m�J , where m = 1; 2; :::.

Therefore, each virtual 
ow is guaranteed a service rate BJ .

Now we explain how the bandwidth is assigned to each virtual 
ow. For a delay-

sensitive 
ow I, as shown in section 3.2, the requirement of guaranteeing a statistical

delay violation bound can be mapped to the requirement of guaranteeing the 
ow at

least one service opportunity everyMI slots, andMI can be calculated as the largest

integer that satis�es (3.23). In the above idealistic system, if we set �I =MI� , where

� is the duration of a slot, virtual 
ow I will be scheduled at least once for veryMI

slots, which is exactly what is required by a delay-sensitive 
ow. Accordingly, the

bandwidth BI assigned to the virtual 
ow corresponding to the delay-sensitive 
ow

I is

BI =
s

�MI

(3.32)

For each virtual 
ow corresponding to a best-e�ort 
ow K, the bandwidth re-

ceived is BK = Bb � wK=(
PNb

I=1wI), where wK, Nb and Bb are 
ow K's bandwidth
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weight, the total number of best-e�ort 
ows, and the bandwidth available to best-

e�ort 
ows, respectively.

Figure 3.1 describes the scheduling procedure performed for each time slot when

there is at least one backlogged 
ow. Lines 1 and 2 are the �rst-phase operations,

where the virtual 
ow (id) with the smallest deadline is picked.

In the second phase, if id is a backlogged delay-sensitive 
ow, its corresponding

real 
ow is always scheduled to transmit (lines 3-4). Thus, each delay-sensitive


ow is guaranteed to have the same service e�ort as its corresponding virtual 
ow.

Therefore, following the above bandwidth assignments and the scheduling policy, the

delay violation probability bound of each delay-sensitive 
ow can be guaranteed, and

such a guarantee is independent of other 
ows' behavior or link status.

Each best-e�ort 
ow K has a goodput target rK, which is de�ned in (3.26). The

scheduler keeps track of the service progress of each best-e�ort 
ow by using a

parameter gK called normalized service time. gK is de�ned as

gK = g0K +
WK

rK
(3.33)

where WK is the total e�ective output the 
ow has achieved in the current back-

logged period, and g0K is the normalized service time at the beginning of the 
ow's

current backlogged period. When a 
ow is continuously backlogged and g0K = 0, gK

represents the equivalent service time the 
ow would have received if its goodput
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rate were maintained at rK. To maintain LT-LQW outcome-fair is to ensure that

gK 's do not di�er greatly.

Lines 5-15 describe the second-phase operations when the 
ow (id) picked in

the �rst-phase is a backlogged best-e�ort 
ow. First, gid is compared with t, which

records the real time passed after the scheduler starts to work. When gid < t, the

average goodput the 
ow has achieved is smaller than rid, its goodput target. In

this case, 
ow id will be scheduled to transmit regardless of the link status (lines

6-7), because we would like to guarantee a minimal goodput level (goodput target)

for each best-e�ort 
ow. Otherwise, if 
ow id's average goodput is already above its

target, the scheduler will try to �nd a backlogged 
ow with the best instantaneous

quality among all the best-e�ort 
ows that has a smaller normalized service time,

and an instantaneous link quality no worse than 
ow id's instantaneous link quality

in the current slot (line 9). Note that Oi is the e�ective output that can be achieved

if 
ow i is scheduled to transmit in the current slot. If such a 
ow exists, 
ow

id will give up the current slot to this 
ow2. Otherwise, 
ow id will transmit in

the current slot. Such operations incorporate considerations for both fairness and

bandwidth e�ciency. Flows with smaller normalized service times are 
ows receiving

less service than what LT-LQW outcome-fairness requires; therefore, having 
ow id

give up its service opportunity to such 
ows helps maintain fairness. On the other

2If more than one 
ow has the best instantaneous link quality, the one with smaller gi is chosen.
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hand, to improve bandwidth e�ciency, 
ow id only gives up its service to the lagging


ow with the best instantaneous link quality.

As each virtual 
ow K is guaranteed to be served at rate BK , and its corre-

sponding best-e�ort 
ow does not give up its service whenever its average goodput

is below its target, a backlogged 
ow can be guaranteed a minimal long-term good-

put as in (3.26). Note that if no swapping service is allowed, LT-LQW outcome-fair

can be assured. However, it will result in low bandwidth e�ciency. The simple ser-

vice swapping mechanism described above actually balances between maintaining

fairness and improving bandwidth e�ciency.

If the virtual 
ow (id) picked in the �rst-phase corresponds to an unbacklogged


ow, the 
ow does not have enough tra�c to make full use of its bandwidth share.

Such excess bandwidth is used to �rst compensate the best-e�ort 
ow with the

least normalized service time (lines 17-19). If no best-e�ort 
ow is backlogged, the

delay-sensitive 
ow with the best instantaneous link quality gets the service (lines

20-22).

At the beginning of each backlogged period of a best-e�ort 
ow K, its g0K is set

as

g0K = max(gK; �gK) (3.34)

where �gK is the average value of the currently backlogged best-e�ort 
ows' gK's. The

reason for such an operation is to let an idle 
ow forgo its \false goodput credit"

accumulated while it is idle. If a 
ow has no data to send for a long period, its gK
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will not increase. When it becomes backlogged again, without the above operation,

it would appear that the 
ow is lagging behind other 
ows greatly, as it has a very

small normalized service time compared with others. Then the 
ow would transmit

aggressively at its own turn of service and have precedence in receiving service given

up by others. However, since such "lagging" results from the 
ow having nothing

to send, not from unfavorable link quality or bias of the scheduling policy, it is

unreasonable to let it have precedence over other backlogged 
ows. In this case, g0K

is set to �gK . Since the algorithm has a mechanism to maintain fairness, the gK's of

the backlogged 
ows are not expected to di�er greatly, �gK is a reasonable estimate

of the service progress of whole system. If after an idle period, the 
ow's gK is still

larger than �gK , it means the 
ow had achieved more goodput than its fair share

before it became idle. In this case, it should keep its old gK to let other 
ows have

precedence.

3.5 Numerical Results

Simulations have been performed to evaluate the algorithm. In the simulations, the

system bandwidth is 1Mbps. Each time slot lasts 1ms. Hence, 250 bytes can be

sent in one slot. Of the 250 bytes, at least 50 bytes are used for control, header, and

minimum error-correction coding. Each link has four possible states with e�ective

outputs of 200 bytes, 150 bytes, 100 bytes, 50 bytes, respectively. Links may have
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Table 3.1: State probabilities of three types of links used in the simulations

state 1 state 2 state 3 state 4

type I 0.05 0.55 0.35 0.05

type II 0 0 0.55 0.45

type III 0.3 0.6 0.05 0.05

di�erent probabilities of being in each state. The three types of links used in the

simulations are listed in Table 3.1. Listed in the table are the state probabilities.

3.5.1 Delay Violation Bound for a Single Delay-Sensitive

Flow

First we test the analytical results in section 3.2. In this test, there is only one delay-

sensitive 
ow with type I link in the system. The token �lling rate and the depth

of the token bucket are 40Kbps and 50 bytes, respectively. The 
ow is continuously

backlogged with 
uid tra�c to maximize the tra�c load. However, the 
ow does not

use the whole available bandwidth. The 
ow is provided service of one slot everyM

slots. For delay bounds of 36ms, 38ms and 40ms, we change the service period M

and calculate the analytical delay violation probability bounds according to (3.20).

The analytical results are compared with simulation results in Figure 3.2. The �gure

veri�es that the delay violation percentages are smaller than the analytical bounds.
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Figure 3.2: Delay violation bounds for a single 
ow

3.5.2 Scheduling Both Types of Flows Together

In this example, there is a total of eight 
ows in the network. Flows 1 and 2 are

best-e�ort 
ows with type II links. Flows 3, 4, 5 and 6 are best-e�ort 
ows with

type III links. Flows 7 and 8 are delay-sensitive 
ows with type I links. Flows 7

and 8 have the same token bucket parameters, which are 40Kbps and 50 bytes for

the token �lling rate and the depth of the token bucket, respectively. The required

delay bounds for 
ows 7 and 8 are both 40ms. All the best-e�ort 
ows have the

same bandwidth weight.

Figure 3.3 and Table 3.2 show the results when all 
ows have greedy tra�c,

which is the worst case for delay-sensitive 
ows. From Table 3.2 we see that when
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Table 3.2: Results of delay-sensitive 
ows

service period analytical delay simulation delay

M violation bound violation percentage


ow 7 21 2:06� 10�3 1:86� 10�3


ow 8 20 5:67� 10�4 5:03� 10�4

multiple 
ows with both types exist, the analytical delay violation bounds can still

be guaranteed.

Figure 3.3 compares the target normalized goodputs of three scheduling schemes.

The target normalized goodput is de�ned as a 
ow's goodput divided by its good-

put target. Achieving LT-LQW outcome-fair means that each 
ow has the same

target normalized goodput. The three schemes being compared are the algorithm

we propose, classical fair-queueing with no service swapping, and one which always

schedules the 
ow with the best instantaneous link quality (If more than one 
ow

has the best instantaneous link quality, the one with the smallest normalized service

time is scheduled). We note that both our algorithm and classical fair-queueing

achieve LT-LQW. In fact, classical fair-queueing also achieves e�ort-fair. However,

as it does not exploit the bene�t of service swapping, bandwidth e�ciency is lower.

Bandwidth e�ciency is calculated as the total goodput divided by the total goodput

achievable if all the links stay in the best link state. The bandwidth e�ciencies of

the three schemes are 75:21%, 65:4%, and 89:9%, respectively. On the other hand,

the scheme that maximizes the bandwidth e�ciency result in extremely unfair share

of bandwidth. We �nd in the �gure that 
ows 1 and 2 almost achieve zero goodput
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Chapter 4

Adaptive Scheduling in Cellular CDMA Networks

4.1 CDMA System Related Issues

4.1.1 Capacity Constraints

In CDMA all streaming service users (e. g. voice) and packet data service users

share the same spectrum. In this paper we assume streaming services always have

the highest priority and are one hundred percent guaranteed (i. e. no loss), and

thus we have variable amount of remaining resource to be allocated by the packet

scheduling algorithm for packet data users. (Note that our algorithm can be applied

to all-packet-data systems as well.) The uplink (from mobile user to base station)

capacity of a CDMA system is limited by the total interference power in the system,

while in the downlink (from base station to mobile user) it is the maximum base
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station power that limits the system capacity. For convenience in this paper we

consider a single-cell system (i. e. other-cell interference is not included).

For either uplink or downlink, we have found a capacity constraint relating the

data rate Ri and the received bit energy to interference density ratio (BIR) 
i =
Si
Ii

W
Ri

of all user i to the system channel bandwidth W , where Si; Ii, and Ri are received

signal power, interference power, and data rate of user i, respectively. The BIR 
i

is a quality of service index and determined by the bit error rate requirement.

Speci�cally [65], [66], for the uplink of a single-cell system, the capacity constraint

is
NX
i=1

Ci � W (1� �) (4.1)

where N is the number of users in the cell, � is the noise to interference density ratio

(a quantity for the interference limit), and

Ci = Ri
i or Ci =

�
1

Ri
i
+

1

W (1� �)

��1
(4.2)

is called the virtual bandwidth consumed by user i. The di�erence between the two

expressions of Ci is: The simpler expression is an approximation where the total

received signal power from all users is counted in the interference power, while the

more complicated expression has excluded the desired user signal from the interfer-

ence in the calculation.
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The capacity constraint for the downlink of a single-cell CDMA system is

NX
i=1

Ci � W (1� �)

1� fo
(4.3)

where � is the fraction of the maximum base station power reserved for control

purposes (synchronization, paging, pilot, etc.), fo or the orthogonality factor is the

portion of the interference cancellation (at the user side) by the downlink orthogonal

codes, and

Ci = Ri
i or Ci =

�
1

Ri
i
+

1

W

��1
(4.4)

The reason for our having two expressions for Ci is exactly the same as in the uplink.

Since the di�erent Ci expressions only slightly change the capacity calculation,

but do not a�ect the packet scheduling algorithm, for simplicity we just use the

simpler version Ci = Ri
i in this paper for both uplink and downlink.

4.1.2 Packet Transmission Scenarios

In the existing CDMA proposals data packets are transmitted in �xed-length frames

(e. g. 10 ms). In general cases user transmission rates are variable, and thus the

packet scheduling problem becomes transmission rate assignment problem (in the

�xed-length frames) for the users requiring data services. Variable transmission rates

can be realized by the multi-code CDMA scheme [31], where multiple packets from

a user are transmitted at the same time on associated code channels.
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In order for the base station to perform the packet scheduling or transmission

rate assignment, the users need to send requests before data transmission. Sending

the request for each data packet is ine�cient. However (as in [3]), it is reasonable

to assume that packets arrive in batches (bursts), and all the packets in a batch

have the same delay deadline. Note that the packet delay deadline in this paper

is not directly associated with the data rate, but is determined by the application

requirement. A user sends to the base station a burst transmission request for all the

packets in the burst. This request should include the amount of data (e. g. number

of bits) in the burst and the delay deadline of the burst.

The base station needs to maintain a request queue for each user who has sent

a burst transmission request. Prior to each frame time, the base station performs

packet scheduling algorithm for the head-of-line burst transmission requests of all

request queues, and assigns the data rate of transmission from each user in the next

frame. From section 4.1.1 we know that when the required receiving BIR 
i is given

for each user, the cell capacity is actually a constraint on the transmission data rate

Ri from each user, and thus it is a rate assignment problem.

Besides the issues of packet delay deadline and cell capacity, the packet scheduling

algorithm may also need to control the average data rate from the user, and consider

the channel status of each user (to avoid too much transmission power from the user

with a bad channel). In the next section we propose a packet scheduling algorithm

taking all these issues into account.
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The downlink scenario is a little simpler since the base station has all the knowl-

edge of the data to be transmitted. However, the base station may ask a user to

report the pilot strength measurement before transmitting data to it in order for the

base station to estimate the channel status and determine the transmission power.

Assume the base station knows the delay allowed for transmitting each packet on

this last hop to the receiver (from the delay information tagged on the packet, for

example). The downlink packet scheduling algorithm should be very similar to the

uplink one.

4.2 Adaptive Packet Scheduling Algorithm

Since the uplink and downlink have similar capacity structure (eq. (4.1) and (4.3))

and packet scheduling procedure, we use uplink in presenting our packet scheduling

algorithm.

Here is the overview of the algorithm: First a priority is calculated for the packets

in the head-of-line bursts of each request queue according to their delay deadline and

the data rate lag (will be de�ned) of each user. Then based on its channel status,

the cell capacity, and also the data rate lag, a transmission rate for the next frame

is assigned to each user following the order of their packet priorities.

76



4.2.1 Priority Calculation

The priority of each packet consists of two parts: delay guarantee priority and lag

adjustment priority.

A packet with closer deadline should have a higher priority of transmission to

avoid its loss due to expiration. Let t be the current time, a be the packet arrival

time, and d be the maximum delay of the packet before expiration, the time-to-live

of the packet is de�ned to be

tl =
a+ d� t

Tf
(4.5)

where Tf is the frame time. In the request queue at the base station, the packet

arrival time is approximated by the arrival time of the request so the time of generat-

ing and transmitting the request is ignored. (In the downlink we can have accurate

packet arrival time.)

By its de�nition tl is actually the remaining time of the packet in the unit of

frame time. The delay guarantee priority is thus chosen to be inversely proportional

to tl.

On the other hand, a user with larger lag on the average data rate should have

higher transmission priority, so that it can eventually reach the target data rate.

Assume that the target data rate and BIR have been agreed on between the user

and the base station during the 
ow admission phase at the beginning of their

communication (see section 4.2.3 for details). The data rate lag is de�ned as the
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di�erence between the target data rate R� and the average data rate �R from the

beginning of the 
ow until the current time, or

�R = R� � �R

If �R < 0 which means the user has received more service than it needs up to

now, its priority in the lag adjustment part should have negative value so that it gives

the transmission opportunity to users with positive lags. Also the lag adjustment

priority should be related to the normalized lag with respect to the target data rate.

We design the lag adjustment priority as (for each user)

pr lag =
�R

�R� � j�Rj ; j�Rj � �R� (4.6)

where � is the maximum allowed deviation of the average data rate from the target

value. Note that pr lag has the same sign as �R, and its absolute value increases

faster when the data rate deviation j�Rj gets closer to its limit �R� (can be seen

from the �rst derivative of pr lag). In case j�Rj > �R�, just set j�Rj = �R� in

the calculation so that pr lag goes to 1 or �1 depending on the sign of �R. (In

implementation we need to specify a big but �nite number for 1.)

Lag adjustment is also the way to achieving fairness among the users. We regard

a user as fairly serviced if its target data rate and quality of service (BIR) are

guaranteed on the average. If assuming perfect power control or the average received
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BIR is kept at its target value, fairness is achieved when the average data rate of

each user reaches its target data rate.

Combining the delay guarantee priority and lag adjustment priority, the overall

packet transmission priority is calculated as

pr = �pr lag + t�1l =
��R

�R� � j�Rj +
Tf

a+ d� t
;

j�Rj � �R�

(4.7)

where the coe�cient � is con�gured to achieve a compromise between the lag ad-

justment and delay guarantee, or user fairness and data loss. Note that at a certain

time all the packets in a head-of-line burst must have the same priority, since the

delay deadline and data rate deviation are the same for all of them, so they can be

all transmitted at a time if enough data rate is assigned to the corresponding user.

4.2.2 Transmission Rate Assignment

Due to power control, the transmission power from a user is proportional to the

channel degradation, or inversely proportional to the fading-times-shadowing enve-

lope given the path loss. When channel status is unfavorable, the user needs large

transmission power to combat fading and shadowing. If even the maximumpower in

the user device can not satisfy the transmission requirement, the transmitted packet

will be received at a low BIR and thus a high probability of error. The packet
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scheduling algorithm, therefore, should take the channel status into consideration,

and lower the user transmission power as much as possible.

For simplicity, in this paper we assume perfect power control which means the

received BIR 
i averaged over every frame is kept at the required value for each user.

In our scheduling algorithm, when the channel degradation of a user is too serious

(exceeding a prede�ned threshold), the user will not be allowed to transmit in the

next frame, and the opportunity is given to other users with better channels. In this

way the average transmission power from a user and the total transmission power

from all users can both be reduced. The channel degradation threshold should be set

such that it takes e�ect before the maximumpower in the user device is reached. Af-

ter all these considerations we can assume that packets are always correctly-received

once they are transmitted.

The user transmission power, which is proportional to the channel degradation,

is equal to the transmission bit energy times the data rate. Therefore, to avoid large

transmission power when channel degradation is serious, we should assign data rate

as inversely proportional to channel degradation. In practice the base station can

estimate the channel status from the user's unit-rate transmission power de�ned

as the transmission power divided by the data rate (so that the data rate factor

in the transmission power is eliminated and only the channel status e�ect is left).

Since the base station issues all the power control commands instructing the user to

increase or decrease transmission power, it should be able to track the change of the
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transmission power from the user. Suppose the initial unit-rate transmission power

from a user is s0 when the 
ow starts (s0 may be unknown to the base station in the

uplink1). Let st = gts0 be the current unit-rate transmission power from the user,

and �s = �gs0 be its average unit-rate transmission power since the 
ow starts. The

base station knows gt and �g because the power control commands actually specify

relative power changes (e. g. increase 1 dB from the previous value). The ratio

st

�s
=
gt

�g

is used in our algorithm as an index of the channel status (smaller st=�s or gt=�g

corresponds to better channel). We use this ratio over the average value in order

to decouple the channel path loss from the transmission rate assignment as both st

and �s contain the path loss factor. Otherwise users closer to the base station tend

to receive more services since their path losses are smaller, which is not a reasonable

assignment scheme. Transmission rate is thus assigned to be inversely proportional

to st=�s or gt=�g.

However, the current value st or gt may not be a good estimate of the channel

status for data transmission in the next frame, if we consider the fast channel varia-

tions (may be much faster than the frame rate). A better estimate, as suggested in

[37], is the \local average" of the channel envelope which is the average value over a

few frames. Therefore, the st or gt used in our algorithm is actually a value averaged

1In the downlink the base station obviously has full knowledge of the transmission power.
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over a time window wav which covers a �xed number of frames up to the current

time. Note that if a user has no transmission in a frame, this frame time should not

be counted in the calculation of the local average st or gt.

On the other hand, the assigned transmission rate should be proportional to the

target value. In order to let the average data rate converge to the target value more

quickly, the lag adjustment is also included in our transmission rate assignment. The

�nal assigned transmission rate is (for each user)

Rt = (R� +�R)
�st
�s

��1
= (R� +�R)

�
�g

gt

�
;

when
�g

gt
> �

(8a)

where � is the channel status threshold such that

Rt = 0 when
�g

gt
< � (8b)

In addition, we put a lower limit Rmin on Rt

Rt > Rmin when
�g

gt
> � (8c)

because if a user has enough priority and the channel degradation is below the

threshold it should be allowed to transmit a certain amount of backlogged data. Rmin

also corresponds to the rate of the \fundamental channel" in multi-code CDMA. A
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user is allowed to send all the packets of a head-of-line burst in the next frame if a

large enough Rt is assigned by (8a).

The rate assignment is performed to all the packets in the head-of-line bursts of

the request queues, in the order of user packet priorities calculated in section 4.2.1.

Users with negative priority, meaning their average data rates are so much ahead of

the target values that can not even be compensated by the delay priority, are not

allowed to transmit in the next frame. Expired packets are discarded and counted in

the data loss rate. If after a round of rate assignment with all request queues there

is still extra cell capacity (in terms of virtual bandwidth (4.1)), the second round of

rate assignment begins following the same procedure. Packet priorities may need to

be re-calculated for the second round rate assignment since the head-of-line bursts

may have changed. This procedure continues until the cell capacity limit is reached,

or no head-of-line bursts with positive priorities are left.

4.2.3 Relation to Flow Admission

Like streaming services, packet data 
ows need to be admitted as well before request-

ing burst transmissions. In the 
ow admission phase users tell the base station about

their target data rates and quality of services requirements (BIR). The base station

admits 
ows based on its estimation on the resource required by each 
ow. The

estimation may be characterized by the mean and variance of the resource consump-

tion by each 
ow. Under the assumption of perfect power control and no other-cell
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interference, the only variation of the resource consumption (the virtual bandwidth

Ri
i) comes from the data rate. The total virtual bandwidth C =
PN

i=1
Ci in this

case can usually be approximated by a Gaussian random variable. Given the outage

probability � in the uplink, which is the probability of the total interference power

exceeding the acceptable level, or equivalently the probability of fC > W (1 � �)g

(eq. (4.1)), the 
ow admission criterion for the uplink is [65]

mc + �
p
vc � W (1� �) (9)

where � = Q�1(�) with Q(x) = 1p
2�

R1
x
e
t
2

2 dt being the tail probability function of a

(0, 1) Gaussian random variable, and

mc =
NX
i=1

mRi

i; vc =

NX
i=1

vRi

2i (10)

are the mean and variance of the total virtual bandwidth C. The mean and variance

of Ri | mRi
and vRi

| can be either estimated from a known tra�c model of the


ow from user i, or reported by the user. We can also write a similar 
ow admission

constraint for the downlink.
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If no packet scheduling is performed, the portion of data causing the total virtual

bandwidth C exceeding W 0 = W (1 � �) is regarded as being lost. Applying the

Gaussian approximation, the average loss rate is, approximately,

pl = E

�
C �W 0

C

����C > W 0
�
Pr fC > W 0g

= �

Z 1

W 0

1p
2�vc

�
1� W 0

c

�
e�

(c�mc)
2

2vc dc

(11)

where � is the outage probability used in 
ow admission. The integral in this formula

can be evaluated numerically when all the parameters are given.

The packet scheduling algorithm can take advantage of the delay allowed for

each packet and thus avoid overload of the system (C > W 0) as much as possible.

As a result, data loss rate can be reduced with packet scheduling. However, the

channel status threshold � set in our scheduling algorithm a�ects the loss rate as it

suppresses transmission in a channel below the threshold. On the other hand, since

the 
ow admission is based on Gaussian approximation and the knowledge of tra�c

models, when we have rather bursty or irregular tra�c the chance of overloading the

system may be higher than expected. At this time the packet scheduling algorithm

can help absorb the excess variation of the tra�c.
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4.3 Numerical Results

We consider the uplink of a single-cell system with three types of tra�c: voice,

low speed (type I) data, and high speed (type II) data. The simulation parameters

are listed in Table 4.1. The voice stream is modelled as an on-o� source with

exponentially distributed talk and silent spurts. The data tra�c (both types) have

Poisson-arrival packets. For simplicity of the simulation we de�ne the same delay

deadline for all packets in a data type. The channel model is the product of a

Rayleigh fading process and a lognormal shadowing process.

In our simulation, we assume that at each frame time the voice tra�c has the

highest priority and is always transmitted. The remaining resource (virtual band-

width) after considering the voice is allocated among the two types of data users

using the packet scheduling algorithm in section 4.2. The assigned transmission

rate (for 
ows with positive priority) has a lower limit of Rmin = 14:4 Kbps. For

simplicity we assign each data rate as multiples of the \basic" rate 14.4 Kbps.

Setting the outage probability � = 0:1, from (9) we know that Nv = 43 voice

users, Nd;1 = 3 type I data users, and Nd;2 = 2 type II data users can be accommo-

dated in the cell. Operating on these parameters, Table 4.2 shows the simulation

results of our packet scheduling algorithm (the \with channel status" part), where

we can see that the average rates of data users are very close to their target values

(14.4 Kbps with type I data and 144 Kbps with type II data), and the data loss rates

are low. The average power listed in this table is actually the normalized unit-rate
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Table 4.1: Simulation parameters (uplink)

Item Symbol Value

System bandwidth W 2.5 MHz

Noise to interference ratio � 0.1

Rayleigh fading parameter �r 0.5

Shadowing deviation �� 6 dB

Lag adjustment priority coe�cient � 1

Maximum lag deviation factor � 0.1

Channel status threshold � 0.001

Outage probability � 0.1

Frame length Tf 10 ms

Local average window wav 50 ms

Simulation length Tt 50000 frames

Voice rate Rv 14.4 Kbps

Voice activity factor �v 0.35

Voice BIR 
v 4 dB

Average talk spurt Tv 0.7 s

Target data rate (I) Rd;1 14.4 Kbps

Data BIR (I) 
d;1 6 dB

Data delay deadline (I) d1 100 ms

Data arrival rate per frame (I) �d;1 144 bits

Target data rate (II) Rd;2 144 Kbps

Data BIR (II) 
d;2 6 dB

Data delay deadline (II) d2 50 ms

Data arrival rate per frame (II) �d;2 1.44 Kbits
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Table 4.2: Simulation results for data users (� = 0:001; � = 0:1)

With channel status No channel status

User Type Avg data rate Data loss Avg Avg data rate Data loss Avg
id (Kbps) rate power (Kbps) rate power

1 I 14.35 0.0005 99.2 14.36 0.0029 184.8

2 I 14.49 0.0008 85.4 14.36 0.0097 171.9

3 I 14.42 0.0007 89.9 14.34 0.0072 177.1

4 II 143.1 0.0010 92.4 143.9 0 179.3

5 II 143.8 0.0010 103.7 144.6 0 203.3

transmission power st=�s de�ned in section 4.2.2. To avoid the ambiguity of packet

size in the measurement, the delay and loss rate are calculated in terms of \bits".

Figure 4.1 illustrates the average rate changes of data users at the beginning phase

of the simulation.

None of the existing CDMA packet scheduling algorithms [2], [7], [50] have con-

sidered user channel variations. To see the e�ect of considering channel status in

the packet scheduling, we simulate the algorithm with the simple rate assignment

Rt = R� + �R where no channel status is monitored. The simulation results are

also shown in Table 4.2. It can be seen that under the channel status threshold

� = 0:001 incorporating channel consideration can save almost half of the transmis-

sion power. Recall that in our algorithm a user is not allowed to transmit if the

channel degradation is above the threshold. Hence, the performance of our packet

scheduling algorithm is dependent on the threshold �. As seen from Table 4.3, where

the loss rate and normalized unit-rate transmission power are averaged among all

88



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
13

13.5

14

14.5

15

15.5

16

Simulation time (x10ms)

A
ve

ra
ge

 d
at

a 
ra

te
 (

K
bp

s)

User 1
User 2
User 3

(a) low speed users

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
130

135

140

145

150

155

160

Simulation time (x10ms)

A
ve

ra
ge

 d
at

a 
ra

te
 (

K
bp

s)

User 4
User 5

(b) high speed users

Figure 4.1: Convergence of user data rate (� = 0:1)

89



Table 4.3: Performance of the algorithm with di�erent � (� = 0:1)

Threshold � Avg loss rate Avg power

0.001 0.0009 93.29

0.005 0.0086 77.67

0.01 0.0115 75.73

0.05 0.0363 64.15

data users, that the two objectives of loss rate reduction and transmission power

saving actually compromise each other with the change of �.

In another experiment we show the e�ectiveness of guaranteeing user fairness

by our packet scheduling algorithm, which can not be achieved by existing CDMA

packet scheduling algorithms. We compare the performance of our algorithm with

the packet scheduling without considering data rate deviation (lag) adjustment as

in the existing algorithms (this is equivalent to setting � = 0 in (4.7) and �R = 0

in (8a)). To facilitate the comparison, we let two \malignant" users, one high speed

and the other low speed, generate 20% more tra�c than what is speci�ed in their

target data rates (i. e. their data arrival rates are 20% higher than other users of the

same type). From the results in Table 4.4, we see that in packet scheduling without

lag adjustment the malignant users (user 3 and user 5) can actually transmit at rates

20% higher than the target rate, while in our algorithm with the lag adjustment the

malignant users are forced to drop packets so that their speci�ed target rates are

maintained. In this experiment the maximum rate deviation factor � is set to be

0.01, so the rate deviation is con�ned within 1% of the target rate of each user.
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Table 4.4: Simulation results with malignant users* (� = 0:001; � = 0:1; � = 0:01)

With lag adjustment No lag adjustment

User id Type Avg data rate Data loss rate Avg data rate Data loss rate
(Kbps) (Kbps)

1 I 14.36 0.0027 14.27 0.0001

2 I 14.38 0.0077 14.36 0.0002

3* I 14.54 0.1549 17.19 0.0001

4 II 143.3 0.0040 142.9 0.0066

5* II 145.4 0.1587 171.6 0.0051

Table 4.5: Change of measurements with outage probability

Outage Calculated Simulated Avg virtual

probability loss rate loss rate bandwidth (MHz)

0.1 0.0055 0.0009 1.863

0.2 0.0130 0.0031 1.973

0.3 0.0212 0.0050 2.032

0.4 0.0360 0.0086 2.126

0.5 0.0505 0.0182 2.177

Finally, let us look at the e�ect of outage probability change on the packet

scheduling. In section 4.2.3 we have provided a method of estimating data loss

rate from outage probability (eq. (11)). However, Table 4.5 shows that our packet

scheduling algorithm has much lower loss rates than those calculated from (11). As

mentioned in section 4.2.3, this is because the packet scheduling algorithm takes

advantage of acceptable delay and queueing of the packets, and thus is able to send

the \jammed" packets at later times when there is enough system resource. There-

fore, from the perspective of data loss rate, with the packet scheduling algorithm

the system is usually able to accommodate more packet data users than what 
ow
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admission control allows. It is also shown in Table 4.5 that higher bandwidth utiliza-

tion (characterized by the virtual bandwidth) can be achieved at the cost of higher

data loss rate.
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Chapter 5

Utility-oriented Adaptive Service and Bandwidth

Allocation

5.1 System Modeling

5.1.1 Modeling the Time-varying Links

It has been proven that the �nite-state Markov channel (FSMC) can accurately

model both fading and shadowing channels [4], [58], [36]. Each channel state corre-

sponds to some channel quality and/or response at the receiver. The quantitative

measures of di�erent states can be signal-to-noise ratio (SNR), bit-error-rate (BER),

1 k-1 k2 ...
p 1,2

p 2,1

p k-1,k

p k,k-1

p 2,3

p 3,2

p k-1,k-2

p k-2,k-1

Figure 5.1: State transition diagram of a k-state Markov Channel
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mutual information, or other parameters. Figure 5.1 shows the state transition di-

agram of a k-state Markov channel model. To completely describe such a Markov

channel, we need the state transition probabilities, average state-holding times, and

some parameter that re
ects the physical characteristics of each state. The transi-

tion probabilities can be speci�ed by a transition probability matrix P as shown in

(1), where pi;j is the transition probability from state i to state j.

P =

2
66666666664

p1;1 p1;2 � � � p1;k

p2;1 p2;2 � � � p2;k

: : : : : : : : : : : : : : : : : :

pk;1 pk;2 � � � pk;k

3
77777777775

(1)

To avoid confusion, from now on we use channel to represent the overall wireless

channel shared by all users, and link to represent a wireless link between two speci�c

communicating parties (e.g. a base station and a mobile user). Each wireless link is

modeled by an FSMC. Assuming that all the users move freely in the same region, all

the links are independent and identical. To capture the link characteristics of each

state of the Markov chain, we associate each state m with a parameter called band-

width degradation ratio Dm, where 0 � Dm < 1 . The bandwidth degradation ratio

represents the overall degree of bandwidth wastage incurred by unsuccessful trans-

missions, coding overhead, and other factors. More speci�cally, if the bandwidth

allocated to the user is r, and its link is currently in state m, Dm � r of bandwidth

will be wasted. We call (1 �Dm) � r the e�ective bandwidth received by the user.
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5.1.2 Utility-oriented Adaptive QoS Service Model

Utility, a concept originally used in economics, has been brought into networking

research [10], [49], [52], in recent years. The utility represents the "level of satisfac-

tion" of a user or the performance of an application. A utility function, which is

monotonically non-decreasing, describes how the utility received by a user changes

with the amount of resources allocated or service delivered. The key advantage of

the utility function is that it inherently re
ects a user's QoS requirements and can

quantify the adaptability of a user or an application. Also, knowing applications'

utility functions can facilitate more e�ective use of network resources. Some ex-

ample of utility functions 1 of di�erent types of applications are shown in Figure

5.2. Figure 5.2 (a) shows a possible utility curve of elastic applications, such as

FTP or email. There is a diminishing marginal rate of performance enhancement

as resource is increased, so the curve is strictly concave everywhere. Figure 5.2 (b)

shows an example of real-time applications, such as streaming video. For this type of

application, the utility increases rapidly after the resource received exceeds certain

threshold and then tends to saturate as resource continues to increase. The last

example shows a utility function of a multimedia application using layered coding.

Delivering each additional layer has certain resource demand and a layer is either

delivered completely or not delivered, therefore, the function is a staircase function.

1A utility function can be a multiple-variable function, with each variable representing one type
of resource. For simplicity and without loss of generality, we only use one-variable utility function
in this paper. Our work is readily extendable to multiple-variable utility functions.
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Figure 5.2: Examples of utility functions

In an adaptive QoS model, the user applications are required to be adaptable

to service degradations, and the bandwidth allocated to the user is not �xed, but

adjusted according to the condition of the network. We propose a utility-oriented

adaptive QoS service model for wireless networks. In this service model, each user 2

i signals its utility function Ui(r), minimum utility level ui;min and maximum utility

level ui;max to the network, where r is the amount of e�ective bandwidth received by

the user. At any time instance, the instant utility value of the user is either zero or

in the range of [ui;min; ui;max]. The network tries to dynamically allocate bandwidth

such that each user's instant utility is maintained above u�;min and in the long run

the bandwidth is allocated fairly and utilized e�ciently.

5.1.3 Formulation of the Bandwidth Allocation Problem

Based on the service model and the wireless link model we have discussed, the

following is the complete description of the bandwidth allocation problem. There

2The word "user" represents either a user or an application.
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are n active users who share transmission bandwidth R. The communication link of

each user follows a k-state Markov channel model. The statistical characteristics of

the Markov model for all links are i.i.d. The average state-holding time of link state

m is tm, and the bandwidth degradation ratio of the state is Dm, where

0 � Dm < 1; 8 1 � m � k (2)

Without loss of generality, we assume that

Dm > Dn; if m < n (3)

To associate the degradation ratio to each user, if user i's link is currently in the

mth state, Di;m will be used. The utility function of user i is Ui(r), where

8>>>>>><
>>>>>>:

Ui(r) = 0 : r < ri;min

ui;min � Ui(r) � ui;max : ri;min � r � ri;max

Ui(r) = ui;max : r > ri;max

(4)

We call ri;min the minimum e�ective bandwidth level and ri;max the maximum e�ec-

tive bandwidth level of user i. If at a particular time instance, user i is allocated ri

amount of bandwidth and its link is in state m, then the instant utility it receives is

ui = Ui((1�Di;m) � ri) (5)
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To fully utilize the bandwidth, no bandwidth is reserved at any time, i.e.

nX
i=1

ri = R (6)

is always satis�ed. It is assumed that each user i, i = 1; 2; � � � n, always generates

enough tra�c to fully consume the allocated bandwidth as long as the e�ective

bandwidth it receives does not exceed ui;max. How do we dynamically allocate the

bandwidth?

To answer the above question, we �rst need to clarify our objectives. The key

issues of all bandwidth allocation problems are: QoS requirements, fairness, and

bandwidth utilization.

1. QoS requirements: In the utility-oriented adaptive service model, the users'

QoS requirements are re
ected in the utility functions. One of the objectives

of the bandwidth allocation scheme is to guarantee the minimum utility level

of each user. Considering the unpredictable nature of wireless links, such

guarantees should be probabilistic rather than deterministic, in order to achieve

high utilization of the bandwidth. De�ne utility outage as the event that user

i's instant utility level falls below ui;min. Therefore, the bandwidth allocation

scheme should guarantee for each user that the probability of utility outage is

smaller than a certain threshold poutage.
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2. Fairness: Since the ultimate service criterion is the amount of received utility,

the fairness criterion should also be based on utility. The fairness objective is

that in the long term every user should experience the same amount of nor-

malized utility increase/decrease. Consider users i and j with average utility,3

ui;avg and uj;avg, respectively,

Gi =
ui;avg � ui;min

ui;min

(7)

represents the normalized gap of the average utility received by user i and its

minimum utility level. Since the average statistics of all user's link models are

the same, we want all users to have the same normalized gap in the long run,

i.e.

Gi ' Gj;8i; j (8)

3. Bandwidth utilization: The total e�ective utility delivered is the criterion for

measuring the bandwidth utilization. The more e�ciently the bandwidth is

utilized, the more total utility is delivered. Therefore, for a �xed amount of

bandwidth we try to acheive a large value of
Pn

i=1
ui;avg, where n is the total

number of users.

3In this general model, the averaging method and the measuring window are 
exible. It can be
simple time average or weighted average, and the measuring window may start from the beginning
of the data session or may just be a �xed time interval, which should be much larger than the
state-holding times. The choice can be up to the service provider.
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5.2 Bandwidth Allocation Scheme

5.2.1 Adaptive Bandwidth Allocation

There are three factors to consider when allocating bandwidth. These are link states,

utility functions, and fairness. To improve the bandwidth utilization, an intuitive

idea would be to dynamically adjust a user's bandwidth share when its link state

changes, and allocate more bandwidth to users with better links and/or with more

e�cient mapping from the allocated bandwidth to utility. However, in the long run

such allocation should not result in discrimination against any user.

When a wireless link changes to a state with a larger Di;m, we say the link

degrades. When a link changes to a state with a smaller Di;m, we say the link

upgrades. The basic idea of the bandwidth allocation scheme is that when a user's

link degrades, it may surrender some bandwidth to another user with a smaller

normalized gap, such that there is a net gain in the combined instant utility. When

a link upgrades, the user may receive some bandwidth from another user with a

larger normalized gap to achieve a gain in the combined instant utility.

In real systems, tracking a link's state changes is achievable (e.g. by measuring

average SNR level) with small tracking delays for slow link variations. We assume

that accurate knowledge of link states is available. Thus the tracking delay is zero.
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The adaptive bandwidth allocation mechanism is invoked whenever there is a link-

state change. Assume at a particular time user i's link state changes to state p. The

following four steps are the operations performed.

1. All the users' average utility level and normalized gap are updated.

2. Users are sorted in increasing order of normalized gap.

3. If the instant utility level of user i is below ui;min, some other users' bandwidth

will be reduced and reallocated to user i to meet its ui;min.

4. If there is no step 3, user i may give up part of its bandwidth to another user

if the link degrades, whereas it may receive some extra bandwidth if the link

upgrades.

We call the user who gives up part of its bandwidth to others the benefactor, and

the user who receives bandwidth from others the bene�ciary. In step 3, to satisfy

user i's ui;min, the bandwidth allocation scheme searches for benefactor(s) starting

from the user with the largest normalized gap. A larger normalized gap means the

user has gone ahead of other users in terms of normalized utility received. For the

sake of fairness, such users should be among the �rst to give up some share of their

bandwidth when other users need more bandwidth to sustain their minimum utility
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levels. Suppose the user with the largest normalized gap is user j, whose link is

currently in state q and it is above uj;min. User j will yield

min(
ri;min

1�Di;p

� ri; rj � rj;min

1�Dj;q

) (9)

amount of bandwidth to user i, where ri and rj are the bandwidth allocated to users

i and j, respectively, before the link state transition. If min( ) takes the value of

the second term in the parenthesis, it means user j can provide enough bandwidth

to user i to satisfy ui;min while maintaining uj;min. If min( ) takes the value of the

�rst term in the parenthesis, it means user j's surplus bandwidth alone is insu�cient

for user i to reach ui;min. In this case, the instant utility of user j is kept at the

minimum level, and all surplus bandwidth is allocated to user i. Then the user with

the second largest normalized gap will be the next candidate for benefactor. This

procedure will be repeated until ui;min can be reached or all the users have been

checked.

If after the link state transition, user i is still above ui;min, user i's bandwidth

share may be adjusted to improve the bandwidth utilization. When user i's link

degrades, the bandwidth allocation scheme will search for an appropriate bene�ciary

to receive some bandwidth from user i and decide the amount to be transferred. The

users with smaller normalized gaps, which means they are lagging behind other users

in receiving e�ective service, are given higher priority to be a bene�ciary. Therefore,
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the users are checked in increasing order of normalized gap. Suppose user j, whose

link is in state q, is the bene�ciary candidate being checked. We have

8>><
>>:

ui = Ui((1 �Di;p) � ri)

uj = Uj((1�Dj;q) � rj)
(10)

The bandwidth allocation scheme tries to maximize the combined instant utility of

the two users with some constraints. The optimization problem is:

maximize:

u0i + u0j (11)

where 8>><
>>:

u0i = Ui((1 �Di;p) � (ri � x))

u0j = Uj((1�Dj;q) � (rj + x))

(12)

subject to: 8>>>>>><
>>>>>>:

x � 0

u0i � ui;min

u0j � uj;min

(13)

(13) can be simpli�ed as

max(0;
rj;min

1�Dj;q

� rj) � x � ri � ri;min

1 �Di;p

(14)
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Since the utility functions are bounded and monotonically non-decreasing and the

constraints are linear, the above optimization problem is guaranteed to have solu-

tion(s), which can be easily solved by numerical methods4 [29], [59].

If the solution of x > 0, then reallocate the bandwidth of users i and j as

8>><
>>:

ri = ri � x

rj = rj + x

(15)

If x = 0, then the same procedure is repeated for the user with the next smallest

normalized gap. This procedure is repeated until one bene�ciary is found or all the

users with smaller normalized gap than user i's have been searched.

The main di�culty in allocating bandwidth is how to combine utilization and

fairness considerations and strike a balance between achieving high bandwidth uti-

lization and fairness among users. If achieving high bandwidth utilization is the sole

objective, some users may su�er starvations. If absolute fairness, such as keeping

all the users at the same instant utility level in [10], is maintained at all times,

bandwidth utilization is sacri�ced. The operations described actually combine the

considerations of both long-term fairness and short-term maximization of bandwidth

utilization. First, only users who are lagging behind user i in normalized average

utility are in the bene�ciary candidate list. Considering long-term fairness objec-

tive, when a user gives up its bandwidth, such bandwidth is transferred to the users

4Although in limited cases a local optimal instead of the global optimal may be found as a
solution using numerical methods when the objective function (11) is not strictly concave, it is still
a valid solution, because as long as x > 0 we still get improvement in the overall instant utility.
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who have received less utility than its fair share, so that they can catch up. The

smaller the user's normalized gap, the higher its priority in the candidate list. Sec-

ond, reallocating bandwidth between the benefactor and the bene�ciary is aimed at

maximizing the combined instant utility, and hence the bandwidth utilization.

Similarly, when user i's link upgrades, user i becomes the bene�ciary and users

with larger normalized gap are the candidates for benefactor. The scheme checks the

candidates starting from the one with the largest normalized gap. Suppose user j,

whose link is in state q, is the benefactor candidate being checked. The optimization

problem becomes:

maximize:

u0i + u0j (16)

where 8>><
>>:

u0i = Ui((1�Di;p) � (ri + x))

u0j = Uj((1 �Dj;q) � (rj � x))

(17)

subject to:

max(0;
ri;min

1�Di;p

� ri) � x � rj � rj;min

1�Dj;q

(18)

If x > 0, then reallocate the bandwidth of user i and j as

8>><
>>:

ri = ri + x

rj = rj � x

(19)
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If x = 0, then the same procedure is repeated for the user with the next largest

normalized gap. This is repeated until one benefactor is found or all the users with

larger normalized gap than user i's have been searched.

To summarize, in the long-term the scheme tries to achieve fair allocation by

compensating lagging users and penalizing leading users, while in the short-term

the scheme tries to make the best of the bandwidth available by maximizing instant

utility. At any time, maintaining the users' minimum utility level is of the highest

priority.

Note that the algorithm is a centralized algorithm performed by the base station

or a central control unit which has su�cient computational power. Since wireless

networks are usually edge networks, the number of users in the network is not

expected to be very large. Therefore, the computational load of the operations,

such as updating normalized gap, is not a major issue.

Besides the link state changes, adjustments in bandwidth allocation is also needed

when the overall available bandwidth changes or users arrive/depart. In fact, the

two situations are quite similar to the bandwidth allocation scheme. When a new

user arrives, it is allocated enough bandwidth to let it reach itsminimum utility level.

Since no bandwidth is reserved for new users, some current users' bandwidth must

be reduced to accommodate the new user. For reduction in the overall bandwidth,

the amount reduced is also obtained from the current users. Therefore, for users

currently in the systems both cases result in reduction in their bandwidth share.
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Similarly, increases in the overall bandwidth and user departures mean bandwidth

increment for the current users.

If r is the amount of de�cient bandwidth which needs to be collected from the

current users, either because of a decrease in overall bandwidth or a user's arrival,

user j having the largest normalized gap Gj is to give up min(max(0; rj� rj;min

1�Dj;q

); r)

amount of bandwidth, where q is the current link state of user j. If it is still

not enough, the user with the second largest normalized gap is chosen to give up

bandwidth to make up the de�cit. This procedure will be repeated until enough

bandwidth has been collected or all the current users have been searched. If after

searching all the current users, the collected bandwidth is still not enough, the

bandwidth allocation scheme will start the second round of collection, again starting

from the user with the largest normalized gap. This time each chosen user will

give up all of its bandwidth or the de�cient amount until the de�cit becomes zero.

Similarly, if there is surplus bandwidth, the users with the �rst k smallest normalized

gap are chosen to receive the surplus bandwidth. Each user can increase its e�ective

bandwidth up to the maximum e�ective bandwidth level.

5.2.2 Admission Control and Utility Outage Probability

It is clear that to guarantee users' minimum utility level, certain admission control

should be enforced to limit the number of users in the system. Given an FSMC's
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transition probability matrix P, the steady state probability � = [�1; �2; :::�k] can

be calculated by solving the following vector equation.

� = �P (20)

If state i's average holding time is ti, then at a particular time the probability of the

link being in state i is

pi =
�i � tiPk

i=1
�i � ti

(21)

Recall that when a user's instant utility falls below its minimum utility level,

then there is a utility outage for the user. If the total bandwidth needed to keep all

the users above their minimum utility levels is larger than the available bandwidth,

then there will be at least one user experiencing a utility outage. The probability po

of such event at any time is

po = Prf
nX
i=1

ri;min

1�Di;mi

> Rg (22)

=
X
A

Y
1�i�n

pmi
(23)

where A = fm1;m2; : : :mn j 1 � m1;m2 : : :mn � k;
Pn

l=1

rl;min

1�Dl;m
l

> Rg, R is the

total available bandwidth, mi is user i's link state at the time instance. It is obvious

that pi;o � po, where pi;o is the utility outage probability of user i. Therefore, if we

can guarantee that po � poutage, where poutage is the desired threshold, we will have

pi;o � poutage.
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Consequently, the admission control policy is as follows. When a new user arrives,

calculate po according to (23), where n is the total number of users including the

new user. If po � poutage, the new user is admitted; otherwise, the user is rejected.

If a user j is admitted, it is initially allocated rj;min=(1 � Dj;q), where q is user

j's current link state. The assigned amount of bandwidth to j is contributed by

the users currently in the network following the algorithm we described previously.

Given poutage, R, the channel model and all the possible classes of utility functions,

(23) can also be used to �nd the feasible region of providing statistical minimum

utility guarantees.

5.3 Numerical Results

In our simulations, we choose three classes of users corresponding to the three types

of utility functions in Figure 5.2. However, we use piecewise linear functions instead

of high order non-linear functions to characterize the utility curves. The reasons of

using such piecewise linear functions are as follows. First, a piecewise linear function

can approximate a high order non-linear function fairly well. We just need to increase

the number of line pieces to increase accuracy. Second, the utility, which represents

a user's perception of service quality at the application level, is often measured

by subjective tests using mean-opinion score (MOS) [49]. In such tests, the utility

curves are modeled as piecewise linear functions. Experimental results on measuring

MPEG-2 video quality show that the utility function of some video on demand
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Figure 5.3: An example of utility function for MPEG-2 video

applications can be modeled as the one shown in Figure 5.3 [49], where C = 1:51D,

B = 1:6D, and A = 2:41D. Third, since the utility curves are heterogeneous, a user

signals its utility curve to the network by specifying a list of key points on the curve

and the network connects those points using lines to get the utility curve, which

is indeed a piecewise linear function. Last, piecewise linear functions simplify the

computation in optimization.

Without loss of generality, we use the utility functions in Figure 5.4 to represent

three classes of users. The horizontal axis is the e�ective bandwidth allocated to a

user, and the vertical axis is the utility received. In each �gure, D is the minimum

e�ective bandwidth level and A is the maximum e�ective bandwidth level. The total

available bandwidth R = 100. Since all the values are of relative importance only,

we do not specify any units for the parameters in the simulation.

A three-state Markov channel model is used to model wireless links. The transi-

tion probability matrix is shown in (24). The average state-holding times are t1 = 3,
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Figure 5.4: Three classes of users in the simulations
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(a) Class I: D = 7:5,
C = 10, B = 20, A = 30

r

u

D C B A

1

2

3

4

(b) Class II: D = 15,
C = 23, B = 24, A = 36
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(c) Class III: D = 10,
C = 15, B = 20, A = 30

t2 = 5, and t3 = 4, and the degradation ratios are D1 = 0:4, D2 = 0:2, and D3 = 0,

where the subscript denotes the corresponding state.

P =

2
6666664

0 0:8 0:2

0:5 0 0:5

0:2 0:8 0

3
7777775

(24)

Since there is no existing bandwidth allocation scheme for networks with multiple-

state (more than two) links, the adaptive bandwidth allocation scheme is compared

with a static bandwidth allocation scheme in terms of utility outage times, fairness

property and bandwidth utilization, which correspond to the three objectives de-

�ned at the beginning of the paper. In the static bandwidth allocation scheme, each

user is allocated a �xed amount of bandwidth ri, given by

ri = R
ri;minPn

i=1
ri;min

(25)
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Table 5.1: Comparisons when K1 = 2, K2 = 2, and K3 = 2

Normalized Gap Utility Outage Time

Adaptive Static Adaptive Static

user 1 0.35304 0.04177 23.2607 2012.6972

user 2 0.35325 0.03624 19.3312 2038.2643

user 3 0.35320 0.40172 41.5280 1985.2418

user 4 0.35398 0.38246 41.5824 2148.8781

user 5 0.35330 0.07510 10.0698 1913.9185

user 6 0.35298 0.11179 11.9377 1878.1480

Utilization Improvement 17.12%

where ri;min is each user's minimum e�ective bandwidth level and n is the number of

users. The initial allocation of the bandwidth for the adaptive scheme at the begin-

ning of the simulation also follows (25). For fair comparison, the overall available

bandwidth R and the user set are �xed during each simulation. The duration of

each simulation is 10000.

Table 5.1 shows the numerical results of the case where there are two users in

each class. The table shows that for the adaptive scheme the maximum di�erence in

normalized gap between any two users is 0:001 (between user 4 and user 6), whereas

for the static scheme the corresponding value is 0:36548 (between user 3 and user

1). Since the di�erence in normalized gaps is a measure of the fairness, it is clear the

adaptive scheme is much fairer. The result also shows that users experience much less

utility outage time in the adaptive scheme than in the static scheme. Using equation

(23) it can be calculated that the upper bound po is 0:00416, which corresponds to

the maximum utility outage time 41:6. It is shown that none of the user's utility

112



Table 5.2: Comparisons when K1 = 2, K2 = 1, and K3 = 3

Normalized Gap Utility Outage Time

Adaptive Static Adaptive Static

user 1 0.45199 0.11268 2.1284 2012.6972

user 2 0.45218 0.10734 0 2038.2643

user 3 0.45186 0.72108 0 1985.2418

user 4 0.45218 0.06785 0 2148.8781

user 5 0.45228 0.07510 0 1913.9185

user 6 0.45175 0.11179 0 1878.1480

Utilization Improvement 22.38%

Table 5.3: Comparisons when K2 = 2 and K3 = 2

max j Gi � Gj j; 8i; j Max. Utility Outage Time Utilization

Adaptive Static Adaptive Static Improvement

K1 = 1 0.00068 0.75880 0 0 6.35%

K1 = 2 0.00100 0.36548 41.5824 2038.2643 17.12%

K1 = 3 0.00205 0.30330 674.4124 2192.5303 21.58%

K1 = 4 0.00147 0.16114 2046.0076 7407.9264 219.84%

outage time is larger than the upper bound. Finally, there is a 17:12% utilization

improvement in terms of the total utility delivered for the adaptive scheme.

Various user sets are tested in our simulations. For illustration another example

is presented in table 5.2. From Tables 5.1 and 5.2 it is clear that the adaptive scheme

outperforms the static scheme in all three aspects: minimumQoS guarantee, fairness,

and utilization.

Since in the static scheme there is no dynamic adjustment of bandwidth, when

the network load increases as the number of user increases the users will spend a

great amount of time experiencing utility outage, which lowers bandwidth utilization

signi�cantly. However, in the adaptive scheme such a problem is less serious because
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of dynamic allocation. Therefore, it is expected that the utilization improvement of

the adaptive scheme is more signi�cant with higher network load. This is demon-

strated by the data in Table 5.3. In Table 5.3 the number of class II and III users

are �xed at K2 = K3 = 2, while the number of class I users is increased from 1 to 4.

Columns 2 and 3 show the maximum di�erence of normalized gaps between any two

users. Columns 4 and 5 show the maximum total utility outage time experienced

by any user. Column 6 shows the utilization improvement of the adaptive scheme

over the static scheme. We see that as K1 increases, the advantages of the adaptive

scheme strengthens in terms of utilization improvement and utility outage time. In

particular, when K1 = 4 and the network is heavily loaded, the utilization improve-

ment is dramatic. At the same time, the fairness property of the adaptive scheme is

maintained.

The simulation results show that the adaptive bandwidth allocation scheme

achieves all three objectives listed in the previous section.
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Chapter 6

Conclusions and Future Work

In this dissertation, we studied packet scheduling and bandwidth allocation for adap-

tive service in wireless networks.

We studied packet scheduling issues in both TDMA-based and CDMA-based

wireless networks and proposed three novel wireless scheduling algorithms applicable

to di�erent link and network models. First, we designed a scheduling algorithm for

TDMA networks with wireless links being modeled as having two states. Compared

with some recent wireless scheduling scheme, the algorithm is shown to distribute ex-

cess bandwidth e�ectively, strike a balance between e�ort-fair and outcome-fair, and

provide delay bound for error-free 
ows and transmission e�ort guarantees for error-

prone 
ows. Second, extending the work for two-state wireless links, we proposed a

novel wireless scheduling algorithm applicable to wireless links with multiple states.

For delay-sensitive 
ows, the algorithm is capable of providing statistical delay vi-

olation bounds. For best-e�ort 
ows, we proposed a new notion of fairness, called

long-term link-quality-weighted outcome-fair, which we believe is more suitable in
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wireless networks than pure outcome-fair or e�ort-fair. The algorithm balances be-

tween bandwidth e�ciency requirement and fairness requirement, and guarantees

minimal goodput levels for best-e�ort 
ows. Third, an adaptive packet scheduling

algorithm for cellular CDMA network was proposed. Unlike other existing CDMA

scheduling schemes that only considers data delay tolerance, our algorithm takes into

account delay tolerance, average rate fairness, and channel variations altogether. It

guarantees packet deadline and average data rate under the assumption of perfect

power control.

Since �xed level of service guarantees and �xed level of resource allocation are

not suitable in wireless networks, we proposed a general utility-oriented adaptive

QoS model for wireless networks and established a framework for formulating the

bandwidth allocation problem for users with time-varying links. To deal with slow

link variations, we designed a high-level adaptive bandwidth allocation scheme. The

scheme is capable of providing QoS guarantees, ensuring long-term fairness, and

achieving high bandwidth e�ciency.

In our work in Chapter 3, we assume that the link states in consecutive time

slots are independent of each other to simplify the analyses. One of the our future

work will be to study how to provide statistical delay guarantees when the indepen-

dence assumption is relaxed. We expect that when heavy-tail correlation exists, it

will be very di�cult to provide delay guarantees while maintaining high bandwidth

e�ciency. However, if the correlation decays very fast in time, we conjecture that
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providing statistical delay guarantees with e�cient use of bandwidth is achievable.

To solve this problem, some asymptotic methods, such as large deviation technique,

may be used.

Another interesting problem in wireless scheduling is how to minimize packet

loss due to missing deadlines when data packets having prede�ned deadlines are

transmitted on error-prone links. Some real-time applications generate data that

become useless if not delivered within certain time limit. In wireline networks, it

is proven that EDF is the optimal scheduling algorithm in delivering such tra�c.

However, EDF can not be optimal in wireless networks, because the variability of

wireless links. To minimize packet loss, the scheduler needs to consider not only the

packet deadlines but also instantaneous link quality and link quality statistics when

scheduling the packets. In such a scenario, we �rst need to �nd whether there exists

an optimal scheduling algorithm. If the answer is positive, we will try to �nd the

optimal algorithm(s).

In addition, we plan to extend our utility-oriented QoS service model to ad-

dress the multi-dimensional resource allocation problem. In this case, the network

resources will include not only bandwidth but also transmission power and other

necessary resources. The corresponding adaptive bandwidth allocation scheme will

also be extended to a general adaptive resource allocation scheme responsible for

allocating more than one types of resources. Since the dynamics of physical wireless

links exist over a wide range of time scales (from microseconds to seconds), an ideal
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system should incorporate adaptive mechanisms working at all levels of time scales.

Therefore, we will try to integrate the high-level adaptive resource allocation scheme

with the low-level adaptive packet scheduling algorithms. We believe the integration

will improve further the resource e�ciency and achieve better QoS performance.
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