A New Class of Turbo-Like Codes with Desirable Practical Properties

Keith M. Chugg
(w/ TW-team: George Dimou, Paul Gray, and Phunsak Thiennviboon + others)

Comm. Theory Workshop
May 6, 2004

TrellisWare Technologies, Inc.
Rancho Bernardo, CA, USA
kchugg@trellisware.com

Communication Sciences Institute
Electrical Engineering Dept.
University of Southern California
chugg@usc.edu
“Desirements”

- **Flexibility**
 - \(k = 128 \rightarrow 16K \text{ bits w/ fine granularity} \)
 - Rates: \(1/2 \rightarrow 19/20 \text{ w/ fine granularity} \)
 - BPSK, QPSK, 8PSK, 16Q, \((12,4)\) PSK

- **Universally good performance**
 - ~ “theory + 1 dB” or comparable to best known
 - Target BERs: \(1e^{-6}, 1e^{-8}, 1e^{-10} \)

- **High-speed decoding**
 - ~ 1 bps/logic-Hz throughput
Candidate TLCs: SCCCs

\[r = r^o r^i \leq r^o \]

- Difficult to hit high rates & low floors
 - Complicated puncture patterns & parallel transitions for rate variability
Candidate TLC: Generalized Repeat Accumulate (GRA) Code

- **Floor @ BER ~ 1e-7, for r=7/8, k=1024**
- **Q=4, J=28**
- **Memory access contention**
RSPC Interpretations

Recursive SPC code (aka zig-zag)

- Method for rate control
New Class of TLCs

- **Benefits**
 - Simple, low-rate outer code (rate J inner)
 - Less memory contention (smaller J & Q)
 - Very low floor/flare (large d_min)
 - Uniform interleaver analysis ==> same design rules as SCCC
Performance: k=1024

- TrellisWare FlexiCode Hardware Prototype
Performance: k=16384

- TrellisWare FlexiCode Hardware Prototype
Throughput Trades (k=16K)

- **TrellisWare FlexiCode Hardware Prototype**
Universally Good Performance (e.g., k=4096)

- TrellisWare FlexiCode Hardware Prototype