Low-Latency SISO via Message Passing on a Binary Tree *

Phunsak Thiennviboon and Keith M. Chugg
Dept. of Electrical Engineering-Systems
University of Southern California
Los Angeles, CA 90089-2565
{thiennvi,chugg}@usc.edu

Calculating the “soft inverse” of a deterministic finite-state machine (FSM) via the SISO (soft-in/soft-out) module is a key operation in many data detection/decoding algorithms [1, 3]. Perhaps the most appreciated application is iterative decoding of concatenated codes. The standard SISO algorithm is the forward-backward algorithm (e.g., [1, 3]) which can be derived from the generalized distributive law (GDL) algorithm [2] in a linear-structure junction tree as shown in Fig. 1(a). Note that a_k, s_k, t_k, and x_k are input, state, transition, and output at time index k of the FSM where $x_k = \mathcal{P}_k(s_k, a_k)$, $s_{k+1} = \mathcal{Q}_k(s_k, a_k)$, and $t_k = (a_k, s_k, s_{k+1}, x_k)$. The components in the dashed block define the SISO module. The local kernels of the nodes a_k and x_k are the soft-input for each variable and the local kernel of the node t_k is a local validity check for all variables of the node. The message passing schedule for this junction tree can be assigned by 3 familiar steps, i.e., forward recursion, backward recursion, and combining/completion. Note that the associated forward and backward recursion steps can be computed in parallel for all of the FSM states at a given time. This architecture provides $\mathcal{O}(N)$ latency and computational complexity, where N is the block size.

![Figure 1: Junction tree of SISO algorithm with (a) linear (b) binary-tree structure](image)

In order to achieve a lower latency algorithm, we arrange the structure of the junction tree to be a binary tree by introducing additional local domains, $\{v_{i,j}\}$, as shown in Fig. 1(b) for $N = 8$. The local kernel of node $v_{i,j}$ is a local validity check for all variables of the node. Since both junction trees in Fig. 1 represent the same system, message passing (i.e., the GDL) on either produces the same desired soft inverse. Considering the

This work was supported in part by the National Science Foundation (NCR-CCR-9726391)
activating schedule, all nodes at the same depth of the binary tree are activated simultaneously from the leaf nodes \(a_k \) and \(x_k \) to the root node \(v_{0,0} \) (or inward recursion), and then the process continues in the reverse direction (or outward recursion). Note that, the pending messages from nodes \(a_k \) and \(x_k \) to \(t_k \) are the soft-input, SI[\(a_k \)] and SI[\(x_k \)], and, after finishing outward recursion, the messages from node \(t_k \) to nodes \(a_k \) and \(x_k \) are the soft-output, \(\text{SO}[a_k] \) and \(\text{SO}[x_k] \) (see [3] for detailed description of the messages). We refer to this SISO as the **Forward-Backward-Tree SISO (FBT-SISO)**. Using this inward/outward schedule, it is straightforward to show that the latency of this algorithm is \(2 \log_2 N \). Since the message updating on a node associated with 3 states typically has a highest complexity, the computational complexity of this algorithm is \(\mathcal{O}(S^9 N) \) where \(S \) is maximum cardinality of all states in the FSM. Therefore, the FBT-SISO has \(\mathcal{O}(\log_2 N) \) latency and \(\mathcal{O}(N) \) computational complexity. Note that this binary-tree structure can be applied easily for an arbitrary value of \(N \). As an example, let consider \(N = 2^m \). The additional local domain \(v_{i,j} \) \((i \in \{0, 1, \ldots, m - 1\}, j \in \{0, 1, \ldots, 2^i - 1\}\) can be defined as follows: \(v_{0,0} = s_{a[0]} \); \(v_{i \neq 0,0} = (s_{a[i]}, s_{x[i]}) \); \(v_{i \neq 0,j \neq \{0,2^i-1\}} = (s_{\{2j\}a[i]}, s_{\{2j+1\}a[i]}, s_{\{2j+2\}a[i]}) \); and \(v_{i \neq 0,2^i-1} = (s_{\{2^{i+1}-2\}a[i]}, s_{\{2^{i+1}-1\}a[i]}) \) where \(\alpha(i) = 2^m-1 \), \(i \) is the depth of node \(v_{i,j} \) \((i = 0 \text{ for root node } v_{0,0}) \), \(j \) is the position (from left to right) of node \(v_{i,j} \) at depth \(i \).

Recently, it has been demonstrated that the SISO computations can be done using a combination of prefix and suffix operations, which leads to a tree architecture with \(\mathcal{O}(\log_2 N) \) latency [4]. This architecture is based on well-known tree-structures for fast parallel prefix computations in the Very Large Scale Integration (VLSI) literature (e.g., fast adders [5, 6, 7]), so we refer to it as a **tree-SISO**. As compared to the tree-SISO, the FBT-SISO presented herein has double the latency but is less (computationally) complex by a factor of approximately \(\log_2 N \). Finally, there exist algorithms with a parallel prefix computation which have similar structure to the FBT-SISO, e.g., the fast adder in [7].

References

