Joint Spatial Division and Multiplexing (JSDM) is an approach to multiuser MIMO downlink that exploits the structure of channel correlation in order to allow for a large number of antennas at the BS while requiring reduced-dimensional Channel State Information at the Transmitter (CSIT).

Channel Model

![Diagram of a UT at AoA θ with a scattering ring of radius r generating a two-sided AS ∆ with respect to the BS](image)

- BS has M antennas and serves K users.
- \(y = H^t x + z \) \((1) \)
- \(H = [h_1 \ldots h_K] \) is the concatenation of user channels, \(x = V d \) is the transmit signal vector, with \(V \) the precoder and \(d \) the vector of data symbols.
- Channel of user \(k \) given by \(h_k = CN(0, R_k) \), \(R_k = U_k \Lambda_k U_k^H \) being the channel covariance of rank \(r_k \).
- Equivalently, \(h_k = U_k \Lambda_k^{\frac{1}{2}} w_k \), where \(w_k \sim CN(0, I) \).
- A UT with AoA \(\theta \) and angular spread \(\Delta \) has \(|R_{\Delta \theta}|_{m,p} = \frac{1}{2} \pi \Delta \lambda e^{j\pi(\alpha_1 - \alpha_2)} dx \)
- \(k(\alpha) = \frac{1}{2\pi(\cos(\alpha), \sin(\alpha))^T} \) is the wave vector for a planar wave impinging with AoA \(\alpha \), \(\lambda \) the carrier wavelength, and \(w_k, w_p \in \mathbb{R}^2 \) are vectors indicating the position of BS antennas.

JSDM Basics

- K UTs are partitioned into G different groups based on the similarity of their covariance matrices, each containing \(s = \frac{M}{G} \) users.
- We assume all users in a group \(g \) have the same covariance matrix \(R_g \) with rank \(r_g \).
- JSDM uses a two stage precoder \(V = BP \).
- \(B \in \mathbb{C}^{M \times r} \) is the pre-beamformer, independent of the instantaneous channel realization and \(P \in \mathbb{C}^{r \times K} \) is a precoding matrix depending on the effective channel \(H = B^* H \) of reduced dimensions. In our work, we use two choices for \(P \), i.e., regularized-ZFBF and ZFBF.
- \(B \) can be designed jointly for all groups (joint group processing (JGP)) or separately for each group \(g \) (per group processing (PGP)).
- In PGP, the received signal by users in group \(g \) is \(y_g = H_g^t P_g d_g + \sum_{g' \neq g} H_g^t B_{g'} P_{g'} d_{g'} + z_g \) where \(H_g = B_{g}^* H_{g} \) and \(B_{g} \in \mathbb{C}^{M \times r} \) with \(B = [B_1 B_2 \ldots B_G] \).
- In JGP, We choose \(B_{g} = U_{g} \). This is called **eigen beamforming**.

- In PGP, the pre-beamforming process creates virtual sectors, similar to spatial sectorization in current cellular standards.
- Channel covariance \(R_g \) changes slowly compared to the instantaneous channel matrix. So, \(R_g \) can be estimated based on a suitable subspace estimation and tracking algorithm, exploiting the downlink training phase.

Achieving capacity with JSDM

Theorem 1 Let the channel covariances of the \(G \) groups are such that \(U = [U_1 \ldots U_G] \) is tall unitary (i.e., \(U^t U = I \)). For this scenario, JSDM achieves the same sum capacity of the corresponding MU-MIMO downlink channel (1) with full CSIT.

- Note that choosing \(B = U_1 U_2 \ldots U_G \) achieves capacity, and gives a set of decoupled MU-MIMO downlink channels.
- It is beneficial to partition users into groups based on the similarity of their eigenspaces and then scheduling across groups satisfying the tall unitary condition.
- If this is not possible, block diagonalization (or approximate block diagonalization) is used to design \(B_g \) such that \(H_g^t B_g \approx 0, \forall g' \neq g \).
- Approximate block diagonalization is important because a majority of the non-zero eigen values of \(R_g \) are very small, and hence, going for exact block diagonalization may degrade the achievable rates.

Performance Analysis

![Comparison of sum spectral efficiency (bit/s/Hz) vs. SNR (dB) for JSDM](image)

- Plots are obtained by using an analytical tool based on random matrix theory, called **deterministic equivalents** avoiding lengthy Monte Carlo simulations.
- **Uniform Circular Array with** \(M = 100, G = 6, K = 24 \), with 4 users per group.
- JSDM with PGP performs well compared to full CSIT case.
- Imperfect CSIT (resulting from estimation of channels by users via downlink pilots and ideal feedback) reduces the achievable rates by 70 percent.

Uniform Linear Arrays

- For a uniformly linear array, the channel covariance \(R \) for a UT at AoA \(\theta \) and angular spread \(\Delta \) is
 \[
 R_{\Delta \theta} = \frac{1}{2\pi} \int \Lambda(\theta) e^{-j2\pi D(m-p)\sin(\theta)} dm
 \]
- For this special case, \(R \) is Toeplitz (with rank \(r \)) and can be approximated by a circulant matrix \(C \), and the approximation holds as follows.
- The set of eigenvalues \(\{\lambda_m(R)\}, \{\lambda_m(C)\} \) are asymptotically equally distributed, i.e., for any continuous function \(f(x) \) defined over \([\alpha_1, \alpha_2] \), we have
 \[
 \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} f(\lambda_m(R)) = \lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} f(\lambda_m(C))
 \]
- The tall unitary matrix of the channel covariance eigenvectors, i.e., \(U \), can be approximated with a submatrix \(F_g \) of the DFT matrix \(F \), formed by a selection of \(S \) columns of \(F \) in the following sense:
 \[
 \lim_{M \to \infty} \frac{1}{M} U U^H - F_{g} F_{g}^H = 0
 \]

A good approximation of the actual rank \(r \) for large but finite \(M \) is given by \(r \approx \rho M \), where \(\rho \) is given as above.

Theorem 3 Groups \(g \) and \(g' \) with angle of arrival \(\theta_g \) and \(\theta_{g'} \) and common angular spread \(\Delta \) have orthogonal eigenspaces if their AoA intervals \([\theta_g - \Delta, \theta_g + \Delta] \) and \([\theta_{g'} - \Delta, \theta_{g'} + \Delta] \) are disjoint.

![Sum spectral efficiency (bit/s/Hz) vs. SNR (dB) for JSDM for DFT pre-beamforming and PGP](image)

- When the BS has a large antenna array, an efficient way consists of selecting groups of users with almost identical AoA intervals, and scheduling \(G \) groups with non-overlapping AoAs.
- JSDM is attractive because only a coarse knowledge (AoA interval) is required, rather than an estimate of the sample covariance matrix.